簡易檢索 / 詳目顯示

研究生: 盧致融
Lu, Jhih-Rong
論文名稱: 修改重力理論與暗能量
Modified Gravity Theories and Dark Energy
指導教授: 耿朝強
Geng, Chao-Qiang
口試委員: 何小剛
He, Xiao-Gang
楊毅
Yang, Yi
潘國全
Pan, Kuo-Chuan
張維甫
Chang, We-Fu
曾柏彥
Tseng, Po-Yen
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 110
語文別: 英文
論文頁數: 52
中文關鍵詞: 暗能量熱力學修改重力理論
外文關鍵詞: Dark Energy, Thermodynamics, Modified Gravity Theories
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們利用 Tsallis 熵與包含指數修正項的熵,並且將熱力學第一定律應用在宇宙
    的視界,藉此建構出新的暗能量模型,並且利用 CosmoMC 軟體進行數值運算
    與擬和。我們發現利用此方法建構的暗能量模型,在微中子總質量的限制範圍
    會被放寬。
    我們也針對一個包含三階向量場交互作用的廣義 Proca 理論來建構暗能量模
    型。我們利用 CMB 與 CMB+HST 觀測數據對此模型進行參數範圍的限制,我
    們發現了在此模型中,哈伯常數在 68% 信賴區間為 H0 = 71.80+1.07
    −0.60 (72.48+0.72−0.60) kms−1Mpc−1 基於 CMB(CMB+HST) 數據,這有助於解決哈伯常數不一致的問題。此外,此模型的約化卡平方接近 1,也代表著此模型是可以描述宇宙演化的候選模型。
    另外,我們研究了其中一個可行 f(R) 暗能量模型在非平坦的 FLRW 時空背
    景中的宇宙學特性。我們利用 CosmoMC 將此模型與觀測數據比較,並且給了
    此模型的參數限制。我們也計算了此模型與 ΛCDM 模型的 AIC、BIC 與 DIC
    數值。


    We apply the first law of thermodynamics to the apparent horizon of the universe with the power-law corrected and non-extensive Tsallis entropies rather than the Bekenstein-Hawking one. We examine the cosmological properties in the two entropy models by using the CosmoMC package. In particular, the first numerical study for the cosmological observables with the power-law corrected entropy is performed. We also show that the neutrino mass sum has a non-zero central value
    with a relaxed upper bound in the Tsallis entropy model comparing with that in the ΛCDM one.

    We consider a specific dark energy model, which only includes the Lagrangian up to the cubic order in terms of the vector field self-interactions in the generalized Proca theory. We examine the cosmological parameters in the model by using the data sets of CMB and CMB+HST, respectively. In particular, the Hubble constant is found to be H0 = 71.80+1.07−0.72 (72.48+0.72−0.60) kms−1Mpc−1 at 68% C.L. with CMB (CMB+HST), which would alleviate the Hubble constant tension. We also obtain that the reduced χ^2 values in our model are close to unity when fitting with CMB and CMB+HST, illustrating that our model is a good candidate to describe the cosmological evolutions of the universe.
    We study the viable Starobinsky f(R) dark energy model in spatially non-flat FLRW backgrounds, where f(R) = R − λ*Rch[1 − (1 + R2/R2
    ch)−1] with Rch and λ representing the characteristic curvature scale and model parameter, respectively.
    We modify CAMB and CosmoMC packages with the recent observational data
    to constrain Starobinsky f(R) gravity and the density parameter of curvature ΩK.
    In particular, we find that the model and density parameters to be λ
    −1 < 0.283 at 68% C.L and ΩK = −0.00099+0.0044
    −0.0042 at 95% C.L, respectively. The best χ^2 fitting result shows that χ^2_{f(R)} < χ^2_{ΛCDM} , indicating that the viable f(R) gravity model is consistent with ΛCDM when ΩK is set as a free parameter. We also evaluate the values of AIC, BIC and DIC for the best fitting results of f(R) and ΛCDM models in the non-flat universe.

    Contents-------------------------------------------------------ii Lists of Tables------------------------------------------------iii 1.Introduction-------------------------------------------------1 2.Modified Cosmology Models from Thermodynamical Approach------5 3.A Dark Energy model from Generalized Proca Theory------------19 4.Constraints on non-flat Starobinsky f(R) Dark Energy Model---31 5.Conclusions--------------------------------------------------40 Appendix:Perturbations-----------------------------------------42

    [1] A. G. Riess et al. [Supernova Search Team], Astron. J. 116, 1009 (1998).
    [2] S. Perlmutter et al. [Supernova Cosmology Project], Astrophys. J. 517, 565
    (1999).
    [3] L. Amendola and S. Tsujikawa, Dark Energy : Theory and Observations,
    (Cambridge Univer- sity Press, 2015).
    [4] S. Weinberg, Gravitation and Cosmology, (Wiley and Sons, New York, 1972).
    [5] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).
    [6] P. J. E. Peebles and B. Ratra, Rev. Mod. Phys. 75, 559 (2003).
    [7] N. Arkani-Hamed, L. J. Hall, C. F. Kolda and H. Murayama, Phys. Rev.
    Lett. 85, 4434 (2000).
    [8] A. G. Riess, S. Casertano, W. Yuan, L. M. Macri and D. Scolnic, Astrophys.
    J. 876, 85 (2019).
    [9] N. Aghanim et al. [Planck], Astron. Astrophys. 641, A6 (2020) [erratum:
    Astron. Astrophys. 652, C4 (2021)]
    [10] V. Poulin, T. L. Smith, T. Karwal and M. Kamionkowski, Phys. Rev. Lett.
    122, 221301 (2019).
    [11] T. Karwal and M. Kamionkowski, Phys. Rev. D 94, 103523 (2016).
    [12] K. Jedamzik and L. Pogosian, Phys. Rev. Lett. 125, 181302 (2020).
    [13] P. Agrawal, G. Obied and C. Vafa, arXiv:1906.08261 [astro-ph.CO].
    46
    [14] E. J. Copeland, M. Sami and S. Tsujikawa, Int. J. Mod. Phys. D 15, 1753
    (2006).
    [15] G. W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).
    [16] C. Deffayet, X. Gao, D. Steer and G. Zahariade, Phys. Rev. D 84, 064039
    (2011).
    [17] C. Charmousis, E. J. Copeland, A. Padilla and P. M. Saffin, Phys. Rev. Lett.
    108, 051101 (2012).
    [18] A. De Felice and S. Tsujikawa, Living Rev. Rel. 13, 3 (2010).
    [19] S. Capozziello, M. De Laurentis and V. Faraoni, Open Astron. J. 3, 49 (2010).
    [20] V. Faraoni, [arXiv:0810.2602 [gr-qc]].
    [21] A. Nunez and S. Solganik, [arXiv:hep-th/0403159 [hep-th]].
    [22] S. Capozziello and M. De Laurentis, Phys. Rept. 509, 167 (2011).
    [23] T. P. Sotiriou and V. Faraoni, Rev. Mod. Phys. 82, 451 (2010).
    [24] S. Nojiri, S. D. Odintsov and V. K. Oikonomou, Phys. Rept. 692, 1 (2017).
    [25] A. A. Starobinsky, JETP Lett. 86, 157 (2007).
    [26] T. Kobayashi and K. i. Maeda, Phys. Rev. D 78, 064019 (2008).
    [27] A. V. Frolov, Phys. Rev. Lett. 101, 061103 (2008).
    [28] K. Bamba, A. Lopez-Revelles, R. Myrzakulov, S. D. Odintsov and L. Sebastiani, Class. Quant. Grav. 30, 015008 (2013).
    [29] K. Bamba, S. Nojiri and S. D. Odintsov, Phys. Lett. B 698, 451 (2011).
    [30] S. A. Appleby, R. A. Battye and A. A. Starobinsky, JCAP 06, 005 (2010).
    [31] C. C. Lee, C. Q. Geng and L. Yang, Prog. Theor. Phys. 128, 415-427 (2012).
    [32] E. Di Valentino, A. Melchiorri and J. Silk, Nature Astron. 4, 196 (2019).
    [33] L. Heisenberg, JCAP 05, 015 (2014).
    47
    [34] J. Beltran Jimenez and L. Heisenberg, Phys. Lett. B 757, 405 (2016).
    [35] A. De Felice, L. Heisenberg, R. Kase, S. Mukohyama, S. Tsujikawa and
    Y. Zhang, JCAP 06, 048 (2016).
    [36] A. De Felice, L. Heisenberg, R. Kase, S. Mukohyama, S. Tsujikawa and
    Y. Zhang, Phys. Rev. D 94, 044024 (2016).
    [37] A. De Felice, L. Heisenberg and S. Tsujikawa, Phys. Rev. D 95, 123540 (2017).
    [38] A. De Felice, C. Q. Geng, M. C. Pookkillath and L. Yin, JCAP 2008, 038
    (2020).
    [39] L. Heisenberg and H. Villarrubia-Rojo, JCAP 03, 032 (2021)
    [40] S. Nakamura, A. De Felice, R. Kase and S. Tsujikawa, Phys. Rev. D 99,
    063533 (2019).
    [41] T. Jacobson, Phys. Rev. Lett. 75, 1260 (1995).
    [42] R. G. Cai and S. P. Kim, JHEP 0502, 050 (2005).
    [43] M. Akbar and R. G. Cai, Phys. Lett. B 635, 7 (2006)
    [44] M. Akbar and R. G. Cai, Phys. Rev. D 75, 084003 (2007)
    [45] M. Jamil, E. N. Saridakis and M. R. Setare, Phys. Rev. D 81, 023007 (2010)
    [46] Z. Y. Fan and H. Lu, Phys. Rev. D 91, no. 6, 064009 (2015)
    [47] Y. Gim, W. Kim and S. H. Yi, JHEP 1407, 002 (2014)
    [48] S. Das, S. Shankaranarayanan and S. Sur, Phys. Rev. D 77, 064013 (2008).
    [49] C. Tsallis, J. Statist. Phys. 52, 479 (1988).
    [50] M. L. Lyra and C. Tsallis, Phys. Rev. Lett. 80, 53 (1998).
    [51] G. Wilk and Z. Wlodarczyk, Phys. Rev. Lett. 84, 2770 (2000).
    [52] D. A. Easson, P. H. Frampton and G. F. Smoot, Phys. Lett. B 696, 273
    (2011).
    48
    [53] N. Komatsu and S. Kimura, Phys. Rev. D 88, 083534 (2013).
    [54] E. M. C. Abreu et al., Physica A 441, 141 (2016); S. Ghaffari et al., Eur. Phys.
    J. C 78, 706 (2018); M. A. Zadeh, A. Sheykhi, H. Moradpour and K. Bamba,
    Eur. Phys. J. C 78, 940 (2018); E. N. Saridakis, K. Bamba, R. Myrzakulov
    and F. K. Anagnostopoulos, JCAP 1812, 012 (2018); M. Tavayef, A. Sheykhi,
    K. Bamba and H. Moradpour, Phys. Lett. B 781, 195 (2018).
    [55] E. M. Barboza et al., Physica A 436, 301 (2015).
    [56] S. Nojiri, S. D. Odintsov and E. N. Saridakis, Eur. Phys. J. C 79, no. 3, 242
    (2019).
    [57] C. Tsallis and L. J. L. Cirto, Eur. Phys. J. C 73, 2487 (2013).
    [58] K. Bamba, S. Capozziello, S. Nojiri and S. D. Odintsov, Astrophys. Space
    Sci. 342, 155 (2012).
    [59] A. Lymperis and E. N. Saridakis, Eur. Phys. J. C 78, 993 (2018).
    [60] M. Abdollahi Zadeh, A. Sheykhi and H. Moradpour, Mod. Phys. Lett. A 34,
    1950086 (2019). [61]
    [61] C. Q. Geng, Y. T. Hsu, J. R. Lu and L. Yin, Eur. Phys. J. C 80, no.1, 21
    (2020)
    [62] C. Q. Geng, Y. T. Hsu, J. R. Lu and L. Yin, Phys. Dark Univ. 32, 100819
    (2021)
    [63] C. Q. Geng, Y. T. Hsu, J. R. Lu, Entropy 23, 1320 (2021)
    [64] W. H. Press et al., Numerical Recipes 3rd Edition: The Art of Scientific
    Computing, (Cambridge University Press, 2007).
    [65] A. Lewis and S. Bridle, Phys. Rev. D 66, 103511 (2002).
    [66] A. Lewis, A. Challinor and A. Lasenby, Astrophys. J. 538, 473 (2000).
    [67] R. Adam et al. [Planck Collaboration], Astron. Astrophys. 594, A10 (2016).
    49
    [68] N. Aghanim et al. [Planck Collaboration], Astron. Astrophys. 594, A11
    (2016).
    [69] P. A. R. Ade et al. [Planck Collaboration], Astron. Astrophys. 594, A15
    (2016).
    [70] C. Heymans et al., Mon. Not. Roy. Astron. Soc. 432, 2433 (2013).
    [71] F. Beutler et al., Mon. Not. Roy. Astron. Soc. 416, 3017 (2011).
    [72] L. Anderson et al. [BOSS Collaboration], Mon. Not. Roy. Astron. Soc. 441,
    24 (2014).
    [73] C. Zhang, H. Zhang, S. Yuan, T. J. Zhang and Y. C. Sun, Res. Astron.
    Astrophys. 14, 1221 (2014).
    [74] R. Jimenez, L. Verde, T. Treu and D. Stern, Astrophys. J. 593, 622 (2003).
    [75] J. Simon, L. Verde and R. Jimenez, Phys. Rev. D 71, 123001 (2005).
    [76] M. Moresco et al., JCAP 1208, 006 (2012).
    [77] E. Gaztanaga, A. Cabre and L. Hui, Mon. Not. Roy. Astron. Soc. 399, 1663
    (2009).
    [78] M. Moresco et al., JCAP 1605, 014 (2016).
    [79] D. Stern, R. Jimenez, L. Verde, M. Kamionkowski and S. A. Stanford, JCAP
    1002, 008 (2010).
    [80] B. A. Reid et al., Mon. Not. Roy. Astron. Soc. 426, 2719 (2012).
    [81] M. Moresco, Mon. Not. Roy. Astron. Soc. 450, L16 (2015).
    [82] N. G. Busca et al., Astron. Astrophys. 552, A96 (2013).
    [83] Y. Hu, M. Li and Z. Zhang, arXiv:1406.7695 [astro-ph.CO].
    [84] A. Font-Ribera et al. [BOSS Collaboration], JCAP 1405, 027 (2014).
    [85] N. Aghanim et al. [Planck], Astron. Astrophys. 641, A8 (2020)
    50
    [86] Y. Akrami et al. [Planck Collaboration], arXiv:1905.05697 [astro-ph.CO].
    [87] Y. Akrami et al. [Planck], Astron. Astrophys. 641, A9 (2020)
    [88] N. Aghanim et al. [Planck], Astron. Astrophys. 641, A5 (2020)
    [89] A. G. Riess, Nature Rev. Phys. 2, 10 (2019)
    [90] S. D. Odintsov, D. S. C. Gómez and G. S. Sharov, arXiv:2011.03957 [gr-qc].
    [91] M. J. Reid, D. W. Pesce and A. G. Riess, Astrophys. J. Lett. 886, L27 (2019).
    [92] J. J. Wei and F. Melia, Astrophys. J. 897, 127 (2020)
    [93] D. W. Pesce, J. A. Braatz, M. J. Reid, A. G. Riess, D. Scolnic, J. J. Condon,
    F. Gao, C. Henkel, C. M. V. Impellizzeri and C. Y. Kuo, et al. Astrophys. J.
    Lett. 891, L1 (2020)
    [94] W. Hu and I. Sawicki, Phys. Rev. D 76, 064004 (2007)
    [95] V. K. Oikonomou, Phys. Rev. D 103, 124028 (2021).
    [96] V. K. Oikonomou, Phys. Rev. D 103, 044036 (2021).
    [97] A. Hojjati, L. Pogosian and G. B. Zhao, JCAP 08, 005 (2011).
    [98] Y. C. Chen, C. Q. Geng, C. C. Lee and H. Yu, Eur. Phys. J. C 79, 93 (2019).
    [99] H. Motohashi, A. A. Starobinsky and J. Yokoyama, JCAP 06, 006 (2011).
    [100] G. Efstathiou and J. R. Bond, Mon. Not. Roy. Astron. Soc. 304, 75 (1999).
    [101] C. Howlett, A. Lewis, A. Hall and A. Challinor, JCAP 1204, 027 (2012).
    [102] A. J. Ross, L. Samushia, C. Howlett, W. J. Percival, A. Burden and M. Manera, Mon. Not. Roy. Astron. Soc. 449, 835 (2015).
    [103] S. Alam et al. [BOSS], Mon. Not. Roy. Astron. Soc. 470, 2617 (2017).
    [104] D. M. Scolnic, D. O. Jones, A. Rest, Y. C. Pan, R. Chornock, R. J. Foley,
    M. E. Huber, R. Kessler, G. Narayan and A. G. Riess, et al. Astrophys. J.
    859, 101 (2018).
    51
    [105] H. Akaike, IEEE Transactions on Automatic Control, vol. 19, pp. 716-723,
    December 1974,
    [106] G. Schwarz, Annals of Statistics 6, 461 (1978).
    [107] Spiegelhalter, D.J., Best, N.G., Carlin, B.P. and Van Der Linde, A., Journal
    of the Royal Statistical Society: Series B (Statistical Methodology) 64, 583
    (2002).
    [108] Rezaei, M., Malekjani, M. Comparison between different methods of model
    selection in cosmology. Eur. Phys. J. Plus 136, 219 (2021).
    [109] Andrew R. Liddle, Mon. Not. Roy. Astron. Soc. 377, L74 (2007).
    [110] H. Kodama and M. Sasaki, Prog. Theor. Phys. Suppl. 78, 1 (1984).
    [111] V. F. Mukhanov, H. Feldman and R. H. Brandenberger, Phys. Rept. 215,
    203 (1992).
    [112] B. F. Schutz and R. Sorkin, Annals Phys. 107, 1 (1977).
    [113] J. Brown, Class. Quant. Grav. 10, 1579 (1993).

    QR CODE