簡易檢索 / 詳目顯示

研究生: 陳力豪
Chen, Li-Hao
論文名稱: 雙酚氧配基與鑭系金屬的一維錯合物之合成
The Preparation of One-Dimensional Macromolecules by Bisphenol-Ligands and Lanthanide Elements
指導教授: 彭之皓
Peng, Chi-How
口試委員: 王潔
Wang, Jane
陳俊太
Chen, Jiun-Tai
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 127
中文關鍵詞: 水熱法金屬串鑭系元素
外文關鍵詞: Hydrothermal method, Metal string, Lanthanide elements
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究致力於合成鑭系金屬錯化合物並進行各項性質和結構分析,希望在金屬原子串 (EMACs)的合成和溶劑熱合成 (Solvothermal synthesis)進行方法學上之整合與探討。在過去的研究當中,多數的金屬串都是由氮原子作為金屬串的電子對提供者,而中心金屬多數為過渡金屬之元素,因此本研究之核心致力於跳脫傳統合成的方法,希望能合成出以氧原子為配基之鑭系金屬錯化合物。此外,鑭系元素在一般的化學領域當中也較少被探討,顯得鑭系元素的研究非常神秘,因此了解其基本性質也是本研究的基礎,如原子半徑、離子半徑、配位數以及電子組態等。
    在實驗部分,主要的合成方法為溶劑法,利用不同沸點的溶劑調節反應溫度,並從中觀察不同溶解度對反應的影響,然而此部分的分析結果並未得到準確的單晶結構,因此透過質譜 (LR¬¬ MALDI) 作為主要分析的方法,試圖從同位素分布和分子量的對應找尋目標分子的蹤跡。雖然沒能得到準確的單晶結構,但我們也利用溶劑法和溶劑熱法的整合,成功得到 [La(OAc)2(DMF)(Chrysazin)]n 之單晶結構,並且從此晶格結構中了解其基本的配位數及配位方式。未來也希望以此為基礎,更深入了解鑭系元素的領域,並合成不同的金屬原子串。


    This study is devoted to the synthesis of lanthanide metal compounds. The properties and structure analysis are also in processing. We are trying to make a combination of methodologies in the synthesis of metal string and solvothermal synthesis.
    Previously, most of the metal strings were provided by nitrogen atom as the electron pair donor of the metal strings, while the central metal was mostly the element of the transition metals. Therefore, the main point of this research was devoted to the synthesis of lanthanide complexes with oxygen atom as the ligands, rather than traditional synthesis methods. In addition, lanthanide elements are rarely discussed in the general field of chemistry, which makes the study of lanthanide elements very mysterious. Therefore, the basic properties are also the basis of this study, such as atomic radius, ion radius, coordination number and electron configuration.
    In the experimental part, there is a main synthesis method, solvent method, using different boiling point solvents regulation of reaction temperature, and to observe the influence of different solubility of reaction, but the exact single crystal structure was not achieved, so mass spectrometry (LR types MALDI) was used as the main analysis method to discover the traces of target by isotopic distribution and mass-spectrum. The monocrystalline structure of [La(OAc)2(DMF)(Chrysazin)]n has been successfully obtained through the integration of solvent and solveothermal methods, and the fundamental properties of [La(OAc)2(Chrysazin)]n have been understood through the instruments. In the future, we also hope to integrate the methods based on this to synthesize more different metal atom strings.

    摘要 I Abstract II 謝誌 IV 目錄 V 表目錄 VIII 圖目錄 IX 式目錄 XVII 第一章 緒論 1 1-1 直線型多核金屬串錯化合物 2 1-1-1 多吡啶胺配基 6 1-1-2 多酚氧配基 8 1-2 金屬-有機配位聚合物 10 1-3 鑭系元素之性質 11 1-3-1 原子半徑與離子半徑 12 1-3-2 電子組態 14 1-3-3 鑭系元素配位數的探討 17 1-4 研究動機 19 第二章 實驗與設計 21 2-1 實驗藥品 22 2-2 實驗儀器 24 2-3 溶劑法-鑭系錯化合物之合成測試 27 2-3-1 溶劑法 27 2-3-2 溶劑法-鑭系錯化合物合成測試 28 2-4 晶體的合成 31 2-4-1 結晶的方法 31 2-4-2 水熱(溶劑熱)反應 33 2-4-3 [La(OAc)2(DMF)(Chrysazin)]n 的合成 35 第三章 結果與討論 36 3-1 溶劑法產物之質譜分析 37 3-1-1 鑭金屬錯化合物質譜分析 37 3-1-2 釹金屬錯化合物質譜分析 42 3-1-3 鐿金屬錯化合物質譜分析 46 3-1-4 鉺金屬錯化合物質譜分析 51 3-1-5 釤金屬錯化合物質譜分析 55 3-2 溶劑法與溶劑熱合成法產物之性質分析-[La(OAc)2(DMF)(Chrysazin)]n 58 3-2-1 晶體結構分析 58 3-2-2 粉末X-ray繞射圖 62 3-2-3 元素分析 63 3-2-4 熱重分析 64 3-2-5 紅外線光譜 65 第四章 結論 66 第五章 以PBA-b-PCL增韌環氧樹脂之研究 69 5-1 前言 70 5-2 文獻探討與研究方法 71 5-3 PBA-b-PCL的合成 75 5-4性質測試與分析 77 5-5 結論 83 第六章 附錄 84 6-1 X-ray 晶體數據 85 6-2 MASS 圖譜 96 6-3 PBA-b-PCL 之1H NMR 圖譜 122 6-4 參考文獻 124

    1. Lee, G.-H.; Chen, C.-H. and Peng, S.-M.; Chem. Commun., 2017, 53, 4673.
    2. Huang, M.-J.; Hua, S.-A.; Fu, M.-Dung; Huang, G.-C.; Yin, C.-X.; Chen, I-C.; Peng, S.-M.; and Chen, C.-H., Chem. Eur. J. 2014, 20, 4526 – 4531.
    3. Rohmer, M.-M.; Lin, J.-C.; M.-J.; Peng, S.-M., Angew. Chem. 2007, 119, 3603 –3606; Angew. Chem. Int. Ed. 2007, 46, 3533 –3536.
    4. Crivillers, N.; Paradinas, M.; Mas-Torrent, M.; Bromley, S.-T.; Rovira, C.; Ocal, C., Chem. Sci. 2012, 3, 1319-1329
    5. Uemura, K.; Dalton Trans., 2017, DOI: 10.1039/C6DT04515D
    6. Mer, A.; Obbade, S.; Devaux, P.; and Abraham, F., Cryst. Growth Des. XXXX, XXX, XXX−XXX.
    7. Henke, S.; Monserrat, B.; Tominaka, S.; Stocke, N. and Anthony K., Cheetham, CrystEngComm, 2016 , 18, 5121–5129.
    8. William, O.; Angela, D.; Gina L.; Sarah, J.; Victor, G.; Young; and Gretchen E.-H., Inorganic Chemistry, 2002, 41, 3656-3667.
    9. Berry, J.-F.; Cotton, F.-A.; Daniels, L.-M.; Murillo, C.-A. and Wang X.; Inorg. Chem. 2003; 42, 2418.
    10. Mohan, P.-J.; Vihar P.; and John E., Chem. Sci., 2012, 3, 1319
    11. John F.-B.; Cotton, F.-A. and Murillo, C.-A., Dalton Trans. 2003, 3015-3021.
    12. Liu, R.; Yu, T.; Shi, Z.; Wang, Z., International Journal of Nanomedicine 2016, 11 1187–1200.
    13. Peer, D.; Karp, J.-M.; Hong, S.; Faro, K., Nat Nanotechnol. 2007, 2, 751–760.
    14. Rabenau, A. Angew. Chem. Int. EdEndl. 1985, 24, 1026.
    15. Cotton, S.-A. and Harrowfield, J.-M., 2012. Lanthanides: Solvation. Encyclopedia of Inorganic and Bioinorganic Chemistry.
    16. Luís, D.; Rute, A.-S., Ferreira, A.-G. Macedo and G.-G. Nunes, J.-F., Inorganic Chemistry, 2019, 58, 12099-12111.
    17. Bera , J.-K. and Dunbar, K.-R., Angew. Chem. Int. Ed., 2002, 41, 4453–4457. 3.
    18. Huang, M.-J.; Lu, H.-C.; Fu, M.-D.; Kuo, C.-K.; Huang, G.-C.; Lee, G .-H.; Chen , C.-h. and Peng, S.-M., Chem. Commun., 2010, 46, 1338–1340.
    19. Tatsumi, Y., Murahashi, T.; Okada, M.; Ogoshi, S. and Kurosawa, H., Chem. Commun. 2008, 477–479.
    20. Kuo, J.-H.; Tsao, T.-B.; Lee, G.-H.; Yeh, C.-Y. and Peng, S .-M.,
    Eur. J. Inorg. Chem. 2011, 2025–2028.
    21. Yao, Y.-M.; Shen, Qi; Xue, M.-Q.; Sun, J., Polyhedron, 2001, 20, 3201–3208.
    22. Zoubi, W.-A.; Karabet, F.; Bandakji, R.- A., Appl. Organometal. Chem. 2017, 31, e3562.
    23. Girard, P.; Namy, J.-L.; and Kagan, H.-B.; Journal of the American Chemical Society, 1980, 102:8.
    24. Chen, C.-J.; Cui, Y.; Cong, Y.; Pan, X.; and Wu, J.- C., Macromolecules 2018, 51, 6800-6809.
    25. Dines, M.-B.; Cooksey, R.-E.; Griffith, P.-C., Inorg Chem. 1983, 22, 1003–1004.
    26. Alberti, G.; Costantino, U.; Marmottini, F.; Vivani, R.; Zappelli, P., Angew ChemInt Edit. 1993, 32, 1357–1359.
    27. Mitsuru, K.; Masami, K.; Mitsuo, S. and Toshinobu, H., Macromolecules 1995, 28, 1721.
    28. 專利參考:
    (1) US7767757B2 Thermoset materials with improved impact resistance.
    (2) US8492482B2 Acrylic-based rubber modified thermoset composition.
    (3) US8492482B2 Mixtures of an aromatic vinyl resin and of polyphenylene ether with improved impact strength
    (4) US8278389B2 Epoxy Resin Composition, Prepreg, Fiber-reinforced Composite Material.
    (5) US9783670B2 Epoxy Resin Composition, Prepreg, Fiber-reinforced Composite Material.
    29. John, C.-F.; Chong, Y.-K.; Frances, E.; Julia, K.; Justine, J; Tam, P.-T.; Roshan, T.-A.; Gordon, F.-M.; Graeme, M.; Ezio, R. and Thang, S.-H., Macromolecules, 1998, 31, 5559.
    30. Enikolopyan, N.-S., Smirnov, B.-R.; Ponomarev, G.-V. and I. M.; Belgovskii, J., Polym. Sci., Polym. Chem. Ed. 1981, 19, 879.
    31. Hermann, L.; Ber. Dtsch. Chem.1906 39, 857.
    32. Dainton, F.-S.; Devlin,T.-R.; Small, P.-A., Trans. Faraday Soc. 1955, 51, 1710-1720.
    33. André, C. and Smets, G., J. Polym. Sci. 1955, 15, 221.
    34. Barsotti, R.; Fine, T.; Raber, I.; Pierre, G.; Scott, S.; Noah, M.; Stephanie, M. and Christophe, N., Macromolecules, 2016, 49, 23, 8960-8970.
    35. Hakala, R.-W., Journal of Chemical Education. 1952, 29,581.
    36. Liu, C.-G.; Yan, D.-Y.; Hu, Q.-Q. and Shang, G.-D., Sustainable Chemistry & Engineering, 2016, 4, 4208-4216

    QR CODE