簡易檢索 / 詳目顯示

研究生: 李正中
Li, Cheng-Chung
論文名稱: A COMMON DSP-BASED PERMANENT-MAGNET SYNCHRONOUS MOTOR DRIVEN CONDENSING UNIT
共通數位訊號處理器為主之永磁同步馬達驅動冷凍系統
指導教授: 廖聰明
Liaw, Chang-Ming
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 179
中文關鍵詞: 永磁同步馬達壓縮機風扇脈寬調變控制電流控制無感測控制
外文關鍵詞: Permanent magnet synchronous motor, compressor, fan, pulse-width modulation, current control, sensorless control
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • This thesis develops a common digital signal processor (DSP) based condensing unit consisting of a sinewave position sensorless permanent-magnet synchronous motor (PMSM) driven compressor, a square-wave PMSM driven fan and a switch mode rectifier (SMR). In the proposed position sensorless sinewave PMSM drive, an internal model based back-EMF estimator is developed for performing its sensorless control. As to the square-wave PMSM fan drive, the voltage-mode direct duty PWM control with -conduction is employed. And its position sensorless control is conducted based on the sensed motor terminal phase voltage. In these two types of PMSM drives, the proper commutation instant shifts are made to yield improved motor driven performances, particularly under higher speeds. In addition, the smooth starting with less current transient is also considered.
    In handling power quality affairs, a single-phase boost SMR front-end is employed to establish well-regulated and boostable DC-link voltage for the two motor drives with good line drawn power quality. To yield improved operating performance of the SMR, the robust hysteresis current-controlled pulse width modulation (HCC-PWM) schemes with fixed and sine bands are developed to yield closer current command tracking around zero-crossing points. Moreover, the random switching technique is supplied to yield uniform distributed current harmonic spectrum.
    Finally, the developed PMSM driven PMSM is employed to drive an experimental condensing unit. The experimental performance comparative evaluation is made for the same condensing unit driven by an existing traditional square-wave PMSM drive and the developed sensorless sinewave PMSM drive. Better performances are observed by the proposed sine-wave position sensorless control method.


    本論文旨在開發一以共通數位信號處理器為主之冷凍系統,包含弦波無位置感測永磁同步馬達驅動壓縮機、方波永磁同步馬達驅動風扇,以及切換式整流器透過市電所建立共通直流鏈之電壓。所建構之無位置感測弦波永磁同步馬達驅動系統,應用內部模式估得之反電動勢從事其無位置感測控制。至於風扇方波永磁同步馬達驅動系統,採 導通直接責任週電壓控制方波脈寬調變機構,其無位置感測控制由感測之馬達一相電壓為之。兩種永磁同步馬達驅動系統均採換相時刻前移增進其高速驅控性能。另外亦考慮降低啟動電流之軟性啟動技巧。
    在電力品質規範方面,建構一單相前端切換式整流器,由電力公司建立調控良好且可升壓之共通直流鏈電壓,同時具有良好之交流入電電力品質。為了更增進切換式整流器之效能,本文提出一強健控制磁滯帶電流控制脈寬調變機構,改善電流在交流零交越點處之波形追控特性。此外,進一步開發隨機切換策略,應用於傳統遲滯帶與正弦遲滯帶之電流控制脈寬調變機構,以得到較均勻分佈之電流諧波頻譜。
    最後,以所建構之無位置感測永磁同步馬達系統驅動一試驗性冷凍展示裝置,實測驗證比較傳統方波永磁同步馬達驅動與所建無位置感測弦波永磁同步馬達驅動之運轉特性,實測結果顯示後者具有較良好之性能。

    ACKNOWLEDGEMENTS…………………………………………. I ABSTRACT .………………………………………………………. II LIST OF CONTENTS .……………………………………………. III LIST OF FIGURES ………………………………………………. VI LIST OF TABLES ...……………………………………………… XIX CHAPTER 1 INTRODUCTION…….….………………………… 1 CHAPTER 2 PERMANENT-MAGNET SYNCHRONOUS MOTOR DRIVE: MOTOR STRUCTURES, MODELING AND SOME KEY ISSUES…………. 8 2.1 Introduction…………………………………………………… 8 2.2 Structures of PMSMs……………………………...………….. 8 2.3 Governing Equations of Sine-wave PMSM…………...…........ 11 2.4 Governing Equations of Square-wave PMSM……………....... 14 2.5 Parameter Estimation of PMSMs…………………….………. 18 2.5.1 Back-EMF Constant…………………………………… 18 2.5.2 Winding Resistance and Inductance…………………… 18 2.6 Dynamic Modeling…………..……..…………………….. 25 2.7 Some Key Control Issues of PMSM Drives…...…………... 26 CHAPTER 3 CONDENSING UNIT USING DSP-BASED STANDARD PERMANENT-MAGNET SYNCHRONOUS MOTOR DRIVES………..…… 28 3.1 Introduction…………………………………………………. 28 3.2 System Configuration…….……………………….……… 28 3.3 Some Practical Digital Control Issues………….……………. 30 3.4 Overview of the DSP TMS320F2812….…….……………….. 33 3.5 Power Circuit, Sensing and Interfacing Circuits……………... 39 3.6 DSP-Based Standard PMSM Sine-wave Drive..…………….. 45 3.7 Dynamic Model Estimation and Model Reference Speed Control for Sine-Wave PMSM Drive……………………….. 62 3.8 DSP-Based Standard PMSM Square-wave Drive………...….. 69 3.9 Dynamic Model Estimation and Speed Controller Design for Square-Wave PMSM Drive..………………………………… 73 CHAPTER 4 POSITION SENSORLESS CONTROLLED SINE-WAVE PERMANENT-MAGNET SYNCHRONOUS MOTOR DRIVE……………… 75 4.1 Introduction …………………………………………... 75 4.2 Some Existing PMSM Position Sensorless Control Methods……………………………………………… 75 4.3 The Established Position Sensorless Sine-wave PMSM Drive 77 4.3.1 System Configuration…………………...…………….. 77 4.3.2 Methodology………..…………………...…………….. 77 4.3.3 Speed Estimation………………………...…………….. 79 4.3.4 The proposed Robust Back-EMF Observer………..….. 79 4.4 Experimental Driving Performance Evaluation………..….. 80 CHAPTER 5 POSITION SENSORLESS CONTROLLED SQUARE-WAVE PERMANENT-MAGNET SYNCHRONOUS MOTOR DRIVE…………………. 96 5.1 Introduction…………………………………………………… 96 5.2 System Configuration and Commutation Signal Generation……………………………………………………. 96 5.3 Soft Starting………………………………………………….. 99 5.4 Estimated Speed Control……………………………………... 99 5.5 Random PWM Switching Control…………………………… 107 CHAPTER 6 POSITION SENSORLESS PERMANENT- MAGNET SYNCHRONOUS MOTOR DRIVE WITH SWITCH-MODE RECTIFIER FRONT-END………………………………………………. 110 6.1 Introduction…………………………………………………… 110 6.2 System Configuration…………..………………………….…. 110 6.3 The Established Boost Switch Mode Rectifier…………….…. 112 6.3.1 Power Circuit and Sensing Circuits……………………. 112 6.3.2 The Proposed Robust Hysteresis Current-Controlled Pulse Width Modulation Scheme…………………….. 116 6.3.3 Voltage Controller……………….…………………….. 118 6.4 Simulated Results………………..…………………………… 119 6.5 Experimental Results…………………………………………. 129 CHAPTER 7 ON-SITE TEST OF THE DEVELOPED PERMANENT-MAGNET SYCHRONOUS MOTOR DRIVEN CONDENSING UNIT..…..…… 152 7.1 Introduction…………………………………………………… 152 7.2 Measurement of Sensorless Square-wave PMSM Drive…….. 152 7.3 Measurement of Sensorless Sine-wave PMSM Drive……... 157 CHAPTER 8 CONCLUSION…………………………....…..…… 168 REFERENCES ...…………………………………………………... 170

    REFERENCES
    A. Permanent-Magnet Synchronous Motor Drives
    [1] J. M. D. Murphy and F. G. Turnbull, Power Electronic Control of AC Motors. New York: Oxford, Inc, 1988.
    [2] P. C. Krause, O. Wasynczuk and S. D. Sudhoff, Analysis of Electric Machine and Drive System. New York: The Institute of Electrical and Electronics Engineers, Inc., 1995.
    [3] P. C. Sen, Principle of Electric Machines and Power Electronics, 2nd ed. Canada: John Wiley & Sons, Inc., 1997.
    [4] D. C. Hanselman, Brushless Permanent-Magnet Motor Design. New York: McGraw, Inc., 1994.
    [5] R. Krishnan, Electric Motor Drives: Modeling, Analysis and Control. New Jersey: Prentice Hall, Inc., 2001.
    [6] B. K. Bose, Modern Power Electronics and AC Drives. New Jersey: Prentice Hall, Inc., 2002.
    [7] S. Morimoto, “Trend of permanent magnet synchronous machines,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 101-108, 2007.
    [8] Y. Honda and Y. Takeda, “Technical evolution of permanent magnet synchronous motors for home appliances,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 118-124, 2007.
    [9] A. M. Jungreis and A. W. Kelley, “Adjustable speed drive for residential applications,” IEEE Trans. Ind. Appl., vol. 31, no. 6, pp. 1315-1322, 1995.
    [10] T. Tanaka, “Environment friendly revolution in home appliances,” in Proc. ISPSD, 2001, pp. 91-95.
    [11] H. Murakami, Y. Honda, H. Kiriyama, S. Morimoto and Y. Takeda, “The performance comparison of SPMSM, IPMSM and SynRM in use as air-conditioning compressor,” in Proc. IEEE, 1999, vol. 2, pp. 840-845.
    [12] A. Murray and Y. Li, “Motion control engine achieves high efficiency with digital PFC integration in air conditioner applications,” in Proc. IEEE ISEE, 2006, pp. 120-125.
    [13] P. Pillay and R. Krishnan, “Modeling, simulation and analysis of permanent magnet motor drives, part I: the permanent-magnet synchronous motor drive,” IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 265-273, 1989.
    [14] P. Pillay and R. Krishnan, “Modeling, simulation, and analysis of permanent-magnet motor drives, part II: the brushless DC motor drive,” IEEE Trans. Ind. Appl., vol. 25, no. 2, pp. 274-279, 1989.
    [15] G. H. Kang, J. P. Hong, G. T. Kim and J. W. Park, “Improved parameter modeling of interior permanent magnet synchronous motor based on finite element analysis,” IEEE Trans. Magn., vol. 36, no. 4, pp. 1867-1870, 2000.
    [16] S. Weisgerber, A. Proca and A. Keyhani, “Estimation of permanent magnet motor parameters,” in Proc. IEEE IAS, 1997, vol. 1, no. 1, pp. 29-34.
    [17] F. F. Bernal, A. G. Cerrada and R. Faure, “Determination of parameters in interior permanent-magnet synchronous motors with iron losses without torque measurement,” IEEE Trans. Ind. Appl., vol. 37, no. 5, pp. 1265-1272, 2001.
    [18] N. Urasaki, T. Senjyu and K. Uezato, “A novel calculation method for iron loss resistance suitable in modeling permanent-magnet synchronous motors,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 41-47, 2003.
    [19] E. C. Lovelace, T. M. Jahns and J. H. Lang, “A saturating lumped-parameter model for an interior PM synchronous machine,” IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 645-650, 2002.
    [20] M. Kondo, “Parameter measurements for permanent magnet synchronous machines,” IEEJ Trans. Elect. Electron. Eng., vol. 2, no. 2, pp. 109-117, 2007.
    B. PWM Switching, Current and Speed Controls
    [21] D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converter: Principle and Practice, IEEE Press, 2003.
    [22] J. Holtz, “Pulsewidth modulation- a survey,” IEEE Trans. Ind. Electron., vol. 39, no. 5, pp. 410-420, 1992.
    [23] K. Taniguchi and A. Okumura, “A PAM inverter system for vector control of induction motor,” in Proc. IEEE PCCON, 1993, pp. 478-483.
    [24] A. M. Hava, R. J. Kerkman and T. A. Lipo, “Carrier-based PWM-VSI over- modulation strategies: analysis, comparison, and design,” IEEE Trans. Power Electron., vol. 13, no. 4, pp. 674-689, 1998.
    [25] M. P. Kazmierkowski and L. Malesani, “Current control techniques for three phase voltage-source PWM converters: a survey,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 691-703, 1998.
    [26] H. C. Chen, M. S. Huang, C. M. Liaw, Y. C. Chang, P. Y. Yu and J. M. Huang, “Robust current control for brushless DC motor,” in Proc. IEE Electric Power Applicat., vol. 147, no. 6, pp. 503-512, 2000.
    [27] M. N. Uddin, T. S. Radwan, G. H. George and M. A. Rahman, “Performance of current controllers for VSI-fed IPMSM drive,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1531-1538, 2000.
    [28] N. Mohan, T. M. Undeland and W. P. Robbims, Power Electronics: Converters, Applications and Design. New York: John Wiley & Sons, 2003.
    [29] D. N. Zmood and D. G. Holmes, “Stationary frame current regulation of PWM inverters with zero steady-state error,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 814-822, 2003.
    [30] H. L. Huy, K. Slimani and P. Viarouge, “Analysis and implementation of a real-time predictive current controller for permanent-magnet synchronous servo drives,” in Proc. IEEE IAS, 1991, vol. 1, no. 28, pp. 996-1002.
    [31] N. Matsui and H. Ohashi, “DSP-based adaptive control of a brushless motor,” IEEE Trans. Ind. Appl., vol. 28, no. 2, pp. 448-454, 1992.
    [32] H. T. Moon, H. S. Kim and M. J. Youn, “A discrete-time predictive current control for PMSM,” IEEE Trans. Power Electron., vol. 18, no. 1, pp. 464-472, 2003.

    [33] Y. A. R. I. Mohamed and E. F. El-Saadany, “A current control scheme with an adaptive internal model for torque ripple minimization and robust current regulation in PMSM drive systems,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 92-100, 2008.
    [34] F. Morel, J. M. Retif, L. S. Xuefang and C. Valentin, “Permanent magnet synchronous machine hybrid torque control,” IEEE Trans. Ind. Elctron., vol. 55, no. 2, pp. 501-511, 2008.
    [35] J. Bastos, A. Monti and E. Santi, “Design and implementation of a nonlinear speed control for a PM synchronous motor using the synergetic approach to control theory,” in Proc. IEEE PESC., 2004, vol. 5, pp. 3397-3402.
    [36] Y. A. R. Ibrahim, M. M. Abu-Elnaga and M. A. El-Sayad, “Robust speed control of PMSM drive system with lag time compensation,” in Proc. IEEE ICEEC, 2004, pp. 823-829.
    [37] C. B. Butt, M. A. Hoque and M. A. Rahman, “Simplified fuzzy-logic-based MTPA speed control of IPMSM drive,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1529-1535, 2004.
    [38] T. S. Radwan and M. M. Gouda, “Intelligent speed control of permanent magnet synchronous motor drive based-on neuro-fuzzy approach,” in Proc. IEEE PEDS, 2005, vol. 1, pp. 602-606.
    [39] M. Nour, I. Aris, N. Mariun and S. Mahmoud, “Hybrid model reference adaptive speed control for vector controlled permanent magnet synchronous motor drive,” in Proc. IEEE PEDS, 2005, vol. 1, pp. 618-623
    C. Tuning Control and Filed-Weakening Control
    [40] H. C. Chen and C. M. Liaw, “Sensorless control via intelligent commutation tuning for brushless DC motor,” in Proc. IEE Electric Power Appl., vol. 146, no. 6, pp. 678-684, 1999.
    [41] C. C. Liaw, C. M. Liaw, H. C. Chang and M. S. Huang, “Robust current control and commutation tuning for an IPMSM drive,” in Proc. IEEE APEC, 2003, vol. 2, no. 2, pp. 1045-1051.
    [42] S. Bolognani, L. Sgarbossa and M. Zordan, “Self-tuning of MTPA current vector generation scheme in IPM synchronous motor drives,” in Proc. EPE., 2007, pp. 1-10.
    [43] C. Mademlis, J. Xypteras and N. Margaris, “Loss minimization in surface permanent-magnet synchronous motor drives,” IEEE Trans. Ind. Electron., vol. 47, no. 1, pp. 115-122, 2000.
    [44] T. Schneider, T. Koch and A. Binder, “Comparative analysis of limited field weakening capability of surface mounted permanent magnet machines,” in Proc. IEE Electric Power Appl., vol. 151, no. 1, pp. 76-82, 2004.
    [45] R. Monajemy and R. Krishnan, “Implementation strategies for concurrent flux weakening and torque control of the PM synchronous motor,” in Proc. IEEE IAS, 1995, vol. 1, pp. 238-245.
    [46] J. Simanek, J. Novak, O. Cerny, and R. Dolecek, “FOC and flux weakening for traction drive with permanent magnet synchronous motor,” in Proc. ISIE, 2008, pp. 753-758.
    [47] S. Bolognani, L. Peretti and M. Zigliotto, “Combined speed and current model predictive control with inherent field-weakening features for PMSM drives,” in Proc. MELECON, 2008, pp. 472-478.
    [48] J. X. Xu, S. K. Panda, Y. J. Pan, T. H. Lee and B. H. Lam, “A modular control scheme for PMSM speed control with pulsating torque minimization,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 526-536, 2004.
    [49] P. Mattavelli, L. Tubiana and M. Zigliotto, “Torque-ripple reduction in PM synchronous motor drives using repetitive current control,” IEEE Trans. Power Electron., vol. 20, no. 6, pp. 1423-1431, 2005.
    D. Position Sensorless Control
    [50] K. Rajashekara, and A. Kawamura, Sensorless control of AC motor drives. New York: IEEE press, 1996.
    [51] J. P. Johnson, M. Ehsani and Y. Guzelgunler, “Review of sensorless methods for brushless DC,” in Proc. IEEE IAS, 1999, vol. 1, pp. 143-150.
    [52] M. Schroedl, “Sensorless control of permanent-magnet synchronous machines: An overview,” in Proc. EPE-PEMC, 2004, vol. 2, pp. 115-123.
    [53] D. Montesinos, S. Galceran, A. Sudria, O. Gomis and F. Blaabjerg, “Low cost sensorless control of permanent magnet motors an overview and evaluation,” in Proc. IEEE EMD, 2005, pp. 1681-1688.
    [54] N. Matsui, “Sensorless PM brushless DC motor drives,” IEEE Trans. Ind. Electron., vol. 43, no. 2, pp. 300-308, 1996.
    [55] R. Mizutani, T. Takeshita and N. Matsui, “Current model-based sensorless drives of salient-pole PMSM at low speed and standstill,” IEEE Trans. Ind. Appl., vol. 34, no. 4, pp. 841-846, 1998.
    [56] A. H. Wijenayake, J. M. Bailey and M. Naidu, “A DSP-based position sensor elimination method with on-line parameter identification scheme for permanent magnet synchronous motor drives,” in Proc. IEEE IAS, 1995, vol. 1, pp. 207-215.
    [57] S. Morimoto, M. Sanada and Y. Takeda, “Mechanical sensorless drives of IPMSM with online parameter identification,” in Proc. IEEE IAS, 2005, vol. 1, no.1, pp. 297-303.
    [58] S. Ichikawa, M. Tomita, S. Doki and S. Okuma, “Sensorless control of permanent-magnet synchronous motors using online parameter identification based on system identification theory,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 363-372, 2006.
    [59] S. Ichikawa, M. Tomita, S. Doki and S. Okuma, “Indirect-rotor-field-orientation speed control of a permanent magnet synchronous motor with stator resistance estimation,” IEEE Trans. Ind. Electron., vol. 53, no. 2, pp. 363-372, 2006.
    [60] M. Rashed, P. F. A. MacConnell, A. F. Stronach and P. Acarnley, “Sensorless indirect-rotor-field-orientation speed control of a permanent magnet synchronous motor with stator resistance estimation,” IEEE Trans. Ind. Electron., vol. 54, no. 3, pp. 1664-1675, 2007.
    [61] Z. Chen, M. Tomita, S. Doki and S. Okuma, “New adaptive sliding observers for position- and velocity sensorless controls of brushless DC motors,” IEEE Trans. Ind. Electron., vol. 47, no. 3, pp.582-591, 2000.
    [62] J. Solsona, M. I. Valla and C. Muravchik, “A nonlinear reduced order observer for permanent magnet synchronous motors,” IEEE Trans. Ind. Electron., vol. 43, no. 4, pp. 38-43, 1996.
    [63] J. Kim and S. Sul, “High performance PMSM drives without rotational position sensors using reduced order observer,” in Proc. IEEE IAS, 1995, vol.1, pp. 75-82.
    [64] A. Piippo, M. Hinkkanen and J. Luomi, “Analysis of an adaptive observer for sensorless control of PMSM drives,” in Proc. IEEE IECON, 2005, pp. 1474-1479.
    [65] M. Tomita, T. Senjyu, S. Doki and S. Okuma, “New sensorless control for brushless DC motors using disturbance observers and adaptive velocity estimations,” IEEE Trans. Ind. Electron., vol. 45, no. 2, pp. 274-282, 1998.
    [66] M. C. Huang, A. J. Moses and F. Anayi, “The comparison of sensorless estimation techniques for PMSM between extended Kalman filter and flux-linkage observer,” in Proc. IEEE APEC, 2006, vol. 2, pp. 654-659.
    [67] S. Zhe, Z. Rongxiang and W. Jing, “Sensorless control method of PMSM based on extended Kalman filter,” in Proc. WCICA, 2006, vol. 2, pp. 8093-8097.
    [68] T. D. Batzel and K. Y. Lee, “An approach to sensorless operation of the permanent magnet synchronous motor using diagonally recurrent neural networks,” IEEE Trans. Energy Convers., vol. 18, no. 8, pp. 100-106, 2003.
    [69] A. Dianov, J. Y. Choi, K. W. Lee and J. H. Lee, “Sensorless vector controlled drive for reciprocating compressor,” in Proc. PESC, 2007, pp. 580-586.
    [70] R. Leidhold and P. Mutschler, “Improved method for higher dynamics in sensorless position detection,” in Proc. IECON, 2008, pp. 1240-1245.
    [71] M. Tomita, M. Satoh, H. Yamaguchi, S. Dokim and S. Okuma, “Sensorless estimation of rotor position of cylindrical brushless DC motors using eddy current,” in Proc. IEEE IECON, 1996, vol. 3, no. 3, pp. 24-28.

    [72] J. P. Johnson and M. Ehsani, “Sensorless brushless DC control using a current waveform Anomaly,” in Proc. IEEE IAS, 1999, vol. 1, no.1, pp. 151-158.
    [73] S. Seman and J. Luomi, “Application of carrier frequency signal injection in sensorless control of a PMSM drive with forced dynamics,” in Proc. IEEE PEDS, 2003, vol. 2, no. 2, pp. 1663-1668.
    [74] A. Piippo, M. Hinkkanen and J. Luomi, “Sensorless control of PMSM drives using a combination of voltage model and HF signal injection,” in Proc. IEEE IAS, 2004, vol. 2, no. 2, pp. 964-970.
    [75] J. H. Jang, J. I. Ha, M. Ohto, K. Ide and S. K. Sul, “Analysis of permanent-magnet machine for sensorless control based on high-frequency signal injection,” IEEE Trans. Ind. Appl., vol. 40, no. 6, pp. 1595-1604, 2004.
    [76] H. C. Chen and C. M. Liaw, “Current-mode control for sensorless BDCM drive with intelligent commutation tuning,” IEEE Trans. Power Electron., vol. 17, no. 5, pp. 747-756, 2002.
    E. Switching-Mode Rectifiers and Front-End AC/DC Converters
    [77] W. Huai and I. Batarseh, “Comparison of basic converter topologies for power factor correction,” in Proc. IEEE Southeastcon, 1998, pp. 348-353.
    [78] J. A. Pomilio and G. Spiazzi, “A low-inductance line-frequency commutated rectifier complying with EN 61000-3-2 standards,” IEEE Trans. Power Electron., vol. 17, no. 6, pp. 963-970, 2002.
    [79] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
    [80] G. Moschopoulos and P. Jain, “Single-phase single-stage power-factor-corrected converter topologies,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 23-35, 2005.
    [81] H. C. Chen, S. H. Li and C. M. Liaw, “Switch-mode rectifier with digital robust ripple compensation and current waveform controls,” IEEE Trans. Power Electron., vol. 19, no. 2, pp. 560-566, 2004.
    [82] S. H. Li and C. M. Liaw, “On the DSP-based switch-mode rectifier with robust varying-band hysteresis PWM scheme,” IEEE Trans. Power Electron., vol. 16, no. 6, pp. 1417-1425, 2004.
    [83] P. Wolfs and P. Thomas, “Boost rectifier power factor correction circuits with improved harmonic and load voltage regulation responses,” in Proc. IEEE PESC, 2007, pp. 1314-1318.
    [84] J. Y. Chai and C. M. Liaw, “Robust control of switch-mode rectifier considering nonlinear behavior,” IET Proc. Elect. Power Appl., vol. 1, no. 3, pp. 316-328, 2007.
    [85] L. Huber, Y. Jang and M. M. Jovanovic, “Performance evaluation of bridgeless PFC boost rectifiers,” IEEE Trans. Power Electron., vol. 23, no. 3, pp. 1381-1390, 2008.
    [86] Y. C. Chang and C. M. Liaw, “Design and control for a charge-regulated flyback switch mode rectifier,” IEEE Trans. Power Electron., vol. 24, no. 1, pp. 59-74, 2009.
    F. Random Switching Methods
    [87] T. G. Habetler and D. M. Divan, “Acoustic noise reduction in sinusoidal PWM drives using a randomly modulated carrier,” IEEE Trans. Power Electron., vol. 6, no. 3, pp. 356-363, 1991.
    [88] C. M. Liaw, Y. M. Lin, C. H. Wu and K. I. Hwu, “Analysis, design and implementation of a random frequency PWM inverter,” IEEE Trans. Power Electron., vol. 15, no. 5, pp. 843-854, 2000.
    [89] B. J. Kang and C. M. Liaw, “Random hysteresis PWM inverter with robust spectrum shaping,” IEEE Trans. Aerosp. Electron. Syst., vol. 37, no. 2, pp. 619-629, 2001.
    [90] B. J. Kang and C. M. Liaw, “Development of a robust random switching hysteresis PWM inverter for linear positioning control,” Electric Power Components and Systems, vol. 30, no. 7, pp. 741-767. 2002.
    [91] S. H. Li and C. M. Liaw, “On the DSP-based switch-mode rectifier with robust varying-band hysteresis PWM scheme,” IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1417-1425, 2004.
    [92] J. Y. Chai, Y. H. Ho, Y. C. Chang and C. M. Liaw, “On acoustic-noise-reduction control using random switching technique for switch-mode rectifiers in PMSM drive,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1295-1309, 2008.
    G. Digital Control
    [93] “TMS320F2812 digital signal processors data manual,” http://focus.ti.com/lit/ds/ symlink/tms320f2812.pdf.
    [94] F. Nedoogar and Moriarty, Digital Control Using Digital Signal Processing, New Jersey: Prentice Hall, Inc., 1999.
    [95] G. F. Franklin, J. D. Powell and A. Emami-Naeini, Feedback Control of Dynamic System, 4th ed. New Jersey: Prentice Hall, Inc., 2002.
    H. Others
    [96] Mitsubishi semiconductor PS21265-P/AP datasheet, http://mitsubishichip.com/
    Global/common/cfm/ePartProfile.cfm?FILENAME=ps21265-p(-ap)_e.pdf.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE