簡易檢索 / 詳目顯示

研究生: 郭敏潔
Kuo, Min-Chieh
論文名稱: 原核生物特殊巨大基因和核苷酸醣焦磷酸化酶的分子演化分析及細菌尿嘧啶雙磷酸葡萄糖焦磷酸化酶抑制劑的搜尋
Molecular Evolution of Exceptionally Large Genes and Nucleotide-Sugar Pyrophosphorylases in Prokaryotes, and Identification of Potential Inhibitors of UDP-Glucose Pyrophosphorylase
指導教授: 張晃猷
Chang, Hwan-You
口試委員: 林志侯
Lin, Thy-Hou
彭慧玲
Peng, Hwei-Ling
蕭乃文
Hsiao, Nai-Wan
陳盈璁
Chen, Ying-Tsong
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 111
中文關鍵詞: 特殊巨大基因核苷酸醣焦磷酸化酶分子演化尿嘧啶雙磷酸葡萄糖焦磷酸化酶抑制劑
外文關鍵詞: exceptionially large-sized genes (ELSGs), nucleotide-sugar pyrophosphorylase (NDP-sugar PPase), molecular evolution, UDP-glucose pyrophosphorylse (UGPase), inhibitor
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分為三章,第一章和第二章與分子演化相關,第三章主要為電腦輔助藥物設計。
    第一章,探討原核生物特殊巨大基因的生成及演化過程。細菌基因平均大小為1 kb左右,但創傷弧菌大於13 kb的基因有3個,而介於8至13 kb之間的基因卻不存在。進一步調查46種細菌和11種古生菌,在將近17萬個基因中,找到大於5 kb的基因有312個(佔0.19%),大於10 kb的基因有42個(佔0.03%)。由同源分析的結果顯示,除了非核醣體胜肽合成酵素外,很多超大基因可能是膜蛋白。利用點矩陣圖分析這些超大基因產物序列顯示,大部分超大基因產生的主要機制為蛋白質功能區間的多重複製。也有經由不同基因間的重組(13個)、基因融合(1個)、和經由水平基因轉移(2個)而使基因增大。由此可知,超大基因是經由不同的演化過程而產生的。
    第二章,探討原核生物中核苷酸醣焦磷酸化酶/磷酸化酶的演化。這類酵素在生物體中提供核苷酸醣於複合多醣類合成。我們收集KEGG資料庫中所有細菌、古生菌、和6種真核生物的核苷酸醣焦磷酸化酶/磷酸化酶序列,共計2千5百多筆,並篩選出86個具代表性的基因。演化分析和蛋白質功能區的分析結果顯示,GDP-甘露糖焦磷酸化酶有最分岐的蛋白質序列,可能最接近核苷酸醣焦磷酸化酶/磷酸化酶的共同祖先。本研究也提出不同核苷酸醣焦磷酸化酶/磷酸化酶的演化模型,並說明其功能區間保留、失去、或得到的過程。
    第三章,探討細菌尿嘧啶雙磷酸葡萄糖焦磷酸化酶的抑制劑篩選。由於原核和真核生物的尿嘧啶雙磷酸葡萄糖焦磷酸化酶的蛋白質序列不相似,可能具有不同的催化機制,適合當作藥物篩選結合標的。本研究利用模擬細菌尿嘧啶雙磷酸葡萄糖焦磷酸化酶分子結構,對不同的化合物資料庫進行抑菌藥物的篩選。在ZINC化合物資料庫,找到了22個尿嘧啶雙磷酸葡萄糖的結構類似物;在NCI化合物資料庫,找到了另外97個化合物,而其中的5個化合物也可被第2種藥物篩選程式挑選出來。這27個化合物可以當作有潛力的抑菌候選藥物,來進行後續的藥物試驗研究。
    本論文說明了細菌特殊巨大基因的形成,也利用酵素核心功能區間對核苷酸醣焦磷酸化酶進行分類及說明其演化過程,並找到了有潛力的抑菌候選化合物。下一步,希望能取得或合成這些候選化合物,或者再針對已核准藥物的資料庫進行篩選(老藥新用),進行後續的微生物抑制試驗,以提供未來新抑菌藥物的研究與開發。


    This thesis consists of 3 chapters. The first 2 chapters describe the molecular evolution of prokaryotic exceptionally large-sized genes (ELSGs) and nucleotide-sugar pyrophosphorylases/phosphorylases (NDP-sugar PPases/Pases). The third chapter describes a computer-aided drug design for searching bacterial UDP-glucose pyrophosphorylase (UGPase) inhibitors.
    In chapter 1, we have noted that, in contrast to the average gene size of approximately 1 kb in bacteria, 3 genes > 13 kb were present in Vibrio vulnificus. The finding prompted us to investigate the prevalence, possible function, and origin of ELSGs (>10 kb) in prokaryotes. Forty-two ELSGs (0.03%) were identified after searching more than 170,000 genes in 46 bacterial and 11 archaeal species. Homology analysis of these ELSGs indicated that, in addition to encoding non-ribosomal peptide synthetic enzymes, many ELSGs likely encode membrane-anchored proteins. Dot-matrix plot analysis of these ELSGs indicated that domain-duplication contributed significantly to size expansion. Other size expansion mechanisms were direct gene fusion, recombination of different genes, and horizontal gene transfer. In summary, ELSGs are commonly present in prokaryotes, and the evolutionary processes that have contributed to the formation of ELSGs are relatively heterogeneous.
    NDP-sugar PPases/Pases play a central role in providing sugar donor for the formation of glycoconjugates. Despite each of the enzymes has unique substrate specificity, they share homologous protein sequences and are therefore difficult to annotate. Chapter 2 describes our effort to better categorize these enzymes. More than 2,500 NDP-sugar PPases/Pases sequences were collected from the KEGG in this study and 86 representative sequences were selected. Phylogenetic and domain analyses revealed that members of GDP-Man PPase had the most diverse protein sequences implying that this enzyme is evolutionally closer to the common ancestor of the NDP-sugar PPases/Pases than other members of the family. Most NDP-sugar PPases/Pases were apparently derived by gene duplication although horizontal gene transfer, as in the case of eukaryotic UDP-Glc PPase, also contributed to the gene diversification. An evolutionary model for this group of enzymes was established by combining phylogenetic analysis and domain profiling. The core domains of each of the enzymes, trend of domain gain and loss, and evolutionary transition were demonstrated. These non-redundant 86 representative sequences may be used as the reference sequences for NDP-sugar PPases/Pases categorization.
    The low levels of sequence homology between prokaryotic and eukaryotic UGPase makes the enzyme a good target for antimicrobial drug development. Chapter 3 describes 22 UDP-Glc analogs and 97 candidate compounds, respectively selected from the ZINC and NCI compound databases using the protein docking program, LigandFit, that have potential to inhibit the bacterial UGPase activity. Five of the 97 candidate compounds were also identified by another docking program, Libdock. These 27 compounds represent potential bacterial UGPase inhibitors.
    The research interpreted the evolution of prokaryotic ELSGs, the categorization and evolutionary history of NDP-sugar PPases/Pases, and obtained the potential bacterial UGPases candidate inhibitors. The next step, we hope to obtain or synthesis these candidate compounds, or to screen the approved drugs in drug product database (new uses for old drugs) to perform the antimicrobial assay for the research and development of novel antimicrobial agents.

    Background and Significance 01 Part-I: Molecular Evolution 02 Chapter 1 Evolution of exceptionally large-sized genes in prokaryotes 03 1.1. Abstract 04 1.2. Introduction 05 1.3. Material and Methods 06 1.3.1. Data source 06 1.3.2. Identification of repeat units and identity 07 1.3.3. Identification of orthologous groups and ELSGs features 08 1.3.4. GC content, codon usage, cladogram, and similarity of ELSGs 08 1.3.5. Gene expression profiles 09 1.4. Results and Discussion 10 1.4.1. Gene size distribution in Vibrio vulnificus 10 1.4.2. Distribution of prokaryotic gene sizes 11 1.4.3. Evolutionary relationship among ELSGs and functional inferring 13 1.4.4. Expression profiles of ELSGs 14 1.4.5. Codon usage in the ELSGs 15 1.4.6. Possible origins of the ELSGs 16 1.4.7. Identification of domain multiplication events in ELSGs 17 1.4.8. Direct evidence of domain multiplication in ELSG formation 19 1.4.9. Evidence of recombination events in ELSGs 20 1.4.10. Direct evidence of gene fusion in ELSGs 20 1.5. Tables 22 Table 1.1 The presence of large-sized genes in prokaryotes and S. cerevisiae. 22 Table 1.2 Percentage of ELSGs in analyzed taxa. 24 Table 1.3 The size and putative function of the 46 ELSGs. 25 Table 1.4 GC content and Nc values of the selected genomes and ELSGs. 26 Table 1.5 The characteristics of repetitive sequence in ELSGs. 27 Table 1.6 The singleton and multi-domain proteins in analyzed prokaryotes. 28 1.6. Figures 29 Fig. 1.1 Gene size distribution of V. vulnificus YJ016. 29 Fig. 1.2 Gene size distribution of 57 prokaryotic species. 30 Fig. 1.3 Evolutionary relationship of ELSGs. 31 Fig. 1.4 Identification of repeat sequences in ELSGs. 32 Fig. 1.5 Mechanisms of ELSG formation. 34 Chapter 2 Evolution and categorization of nucleotide-sugar pyrophosphorylases in prokaryotes 35 2.1. Abstract 36 2.2. Introduction 37 2.3. Materials and Methods 38 2.3.1. Data collection of NDP-sugar PPases/Pases 38 2.3.2. Phylogenetic analysis 39 2.3.3. Protein structures, identification of functional domains and motifs 39 2.3.4. Domain-based phylogenetic analysis 40 2.4. Results 40 2.4.1. Protein diversities of NDP-sugar PPases/Pases 40 2.4.2. Evolutionary relationship of NDP-sugar PPases/Pases 42 2.4.3. Domain pattern and categorization of NDP-sugar PPases/Pases 44 2.4.4. Core domains and evolutionary history of NDP-sugar PPases/Pases 47 2.5. Discussion 49 2.6. Tables 53 Table 2.1 Initially extracted and representative gene numbers of NDP-sugar PPases/Pases in 6 eukaryotes and all prokaryotes. 53 Table 2.2 List of questionable grouped genes from phylogenetic analysis. 54 Table 2.3 Domain index. 55 2.7. Figures 57 Fig. 2.1 The flow chart of data collection, selection, and analysis in this study. 57 Fig. 2.2 The evolutionary relationship estimation of NDP-sugar PPases/Pases. 58 Fig. 2.3 Domain pattern of 86 representative sequences. 63 Fig. 2.4 Domain cluster of NDP-sugar PPases/Pases. 64 Fig. 2.5 A proposed evolution history of NDP-sugar PPases/Pases. 67 2.8. Supporting Information 73 Table S2.1 Gene information of 86 representative sequences. 73 Part-II: 75 Chapter 3 Identification of potential inhibitors of bacterial UDP-glucose pyrophosphorylases by computer-aided drug design 75 3.1. Abstract 76 3.2. Introduction 78 3.3. Materials and Methods 79 3.3.1. Homology modeling and verification 79 3.3.2. Protein docking and scoring 80 3.3.3. Reagents, proteins, and experimental validation of UGPases 81 3.3.4. Protein structures of UGPases 82 3.3.5. Compound databases and compounds for protein docking 82 3.3.6. Protein-ligand interaction 83 3.4. Results 83 3.4.1. Homology modeling and structure verification 83 3.4.2. Docking by NDP-sugars and experimental validation 85 3.4.3. Protein identities and RMSD values of known UGPase structures 86 3.4.4. Docking by UDP-Glc analogs and NCI compounds, and the potential inhibitors 86 3.4.5. Protein-compound interactions 87 3.5. Discussion 89 3.6. Conclusion 90 3.7. Tables 92 Table 3.1 The results of protein docking and activity assay of UGPase of K. pneumoniae. 92 Table 3.2 Twenty-two common candidates were UDP-Glc analogs screened from ZINC compound database. 93 Table 3.3 Top ten, 55th, and 82th of the 97 common candidates were screened from NCI compound database. 94 3.8. Figures 95 Fig. 3.1 Comparison of K. pneumoniae Gal, GalF, and E. coli GalU (2E3D). 95 Fig. 3.2 Evaluation of the K. pneumoniae UGPase molecular model. 96 Fig. 3.3 GalU of K. pneumoniae was docked by 9 naturally occurring NDP-sugars. 97 Fig. 3.4 Chemical structures of 3 natural substrates used in the protein docking and validation experiments. 98 Fig. 3.5 Comparison of different UGPases with known molecular structures. 99 Fig. 3.6 Structures of the potential bacterial UGPases inhibitors in this study. 101 Fig. 3.7 Protein diagram of UGPase-ligand interaction. 102 3.9. Supporting Information 104 Table S3.1 Ninety-seven common candidates were screened from NCI compound database. 104 References 106

    1. Chothia C, Gough J, Vogel C, Teichmann SA (2003) Evolution of the protein repertoire. Science 300: 1701-1703.
    2. Hughes D (2000) Evaluating genome dynamics: the constraints on rearrangements within bacterial genomes. Genome Biol 1: REVIEWS0006.
    3. Davis JC, Petrov DA (2005) Do disparate mechanisms of duplication add similar genes to the genome? Trends Genet 21: 548-551.
    4. Li WH, Yang J, Gu X (2005) Expression divergence between duplicate genes. Trends Genet 21: 602-607.
    5. Notebaart RA, Huynen MA, Teusink B, Siezen RJ, Snel B (2005) Correlation between sequence conservation and the genomic context after gene duplication. Nucleic Acids Res 33: 6164-6171.
    6. Mira A, Ochman H, Moran NA (2001) Deletional bias and the evolution of bacterial genomes. Trends Genet 17: 589-596.
    7. Stover CK, Pham XQ, Erwin AL, Mizoguchi SD, Warrener P, et al. (2000) Complete genome sequence of Pseudomonas aeruginosa PA01, an opportunistic pathogen. Nature 406: 959-964.
    8. Walsh CT (2004) Polyketide and nonribosomal peptide antibiotics: modularity and versatility. Science 303: 1805-1810.
    9. Wheeler DL, Chappey C, Lash AE, Leipe DD, Madden TL, et al. (2000) Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 28: 10-14.
    10. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2003) GenBank. Nucleic Acids Res 31: 23-27.
    11. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European Molecular Biology Open Software Suite. Trends Genet 16: 276-277.
    12. Carver T, Bleasby A (2003) The design of Jemboss: a graphical user interface to EMBOSS. Bioinformatics 19: 1837-1843.
    13. Altschul SF (1991) Amino acid substitution matrices from an information theoretic perspective. J Mol Biol 219: 555-565.
    14. Heger A, Holm L (2000) Rapid automatic detection and alignment of repeats in protein sequences. Proteins 41: 224-237.
    15. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680.
    16. Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, et al. (2003) Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res 31: 3497-3500.
    17. von Mering C, Jensen LJ, Snel B, Hooper SD, Krupp M, et al. (2005) STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Res 33: D433-437.
    18. von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, et al. (2003) STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 31: 258-261.
    19. Snel B, Lehmann G, Bork P, Huynen MA (2000) STRING: a web-server to retrieve and display the repeatedly occurring neighbourhood of a gene. Nucleic Acids Res 28: 3442-3444.
    20. Tatusov RL, Fedorova ND, Jackson JD, Jacobs AR, Kiryutin B, et al. (2003) The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4: 41.
    21. Tatusov RL, Koonin EV, Lipman DJ (1997) A genomic perspective on protein families. Science 278: 631-637.
    22. Zdobnov EM, Apweiler R (2001) InterProScan--an integration platform for the signature-recognition methods in InterPro. Bioinformatics 17: 847-848.
    23. Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, et al. (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33: W116-120.
    24. Wright F (1990) The 'effective number of codons' used in a gene. Gene 87: 23-29.
    25. Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12: 357-358.
    26. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403-410.
    27. Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK (2005) Chitin induces natural competence in Vibrio cholerae. Science 310: 1824-1827.
    28. Meibom KL, Li XB, Nielsen AT, Wu CY, Roseman S, et al. (2004) The Vibrio cholerae chitin utilization program. Proc Natl Acad Sci U S A 101: 2524-2529.
    29. Merrell DS, Butler SM, Qadri F, Dolganov NA, Alam A, et al. (2002) Host-induced epidemic spread of the cholera bacterium. Nature 417: 642-645.
    30. Tu CJ, Shrager J, Burnap RL, Postier BL, Grossman AR (2004) Consequences of a deletion in dspA on transcript accumulation in Synechocystis sp. strain PCC6803. J Bacteriol 186: 3889-3902.
    31. Helmann JD, Wu MF, Gaballa A, Kobel PA, Morshedi MM, et al. (2003) The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors. J Bacteriol 185: 243-253.
    32. Boshoff HI, Reed MB, Barry CE, 3rd, Mizrahi V (2003) DnaE2 polymerase contributes to in vivo survival and the emergence of drug resistance in Mycobacterium tuberculosis. Cell 113: 183-193.
    33. Dasgupta N, Wolfgang MC, Goodman AL, Arora SK, Jyot J, et al. (2003) A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in Pseudomonas aeruginosa. Mol Microbiol 50: 809-824.
    34. Su Z, Mao F, Dam P, Wu H, Olman V, et al. (2006) Computational inference and experimental validation of the nitrogen assimilation regulatory network in cyanobacterium Synechococcus sp. WH 8102. Nucleic Acids Res 34: 1050-1065.
    35. Holden MT, Feil EJ, Lindsay JA, Peacock SJ, Day NP, et al. (2004) Complete genomes of two clinical Staphylococcus aureus strains: evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci U S A 101: 9786-9791.
    36. Wilson M, DeRisi J, Kristensen HH, Imboden P, Rane S, et al. (1999) Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. Proc Natl Acad Sci U S A 96: 12833-12838.
    37. Comeron JM (1999) K-Estimator: calculation of the number of nucleotide substitutions per site and the confidence intervals. Bioinformatics 15: 763-764.
    38. Comeron JM, Kreitman M, Aguade M (1999) Natural selection on synonymous sites is correlated with gene length and recombination in Drosophila. Genetics 151: 239-249.
    39. Loewe L, Charlesworth B (2007) Background selection in single genes may explain patterns of codon bias. Genetics 175: 1381-1393.
    40. Verstrepen KJ, Jansen A, Lewitter F, Fink GR (2005) Intragenic tandem repeats generate functional variability. Nat Genet 37: 986-990.
    41. Thoden JB, Holden HM (2007) The molecular architecture of glucose-1-phosphate uridylyltransferase. Protein Sci 16: 432-440.
    42. Genevaux P, Bauda P, DuBow MS, Oudega B (1999) Identification of Tn10 insertions in the dsbA gene affecting Escherichia coli biofilm formation. FEMS Microbiol Lett 173: 403-409.
    43. Mollerach M, Lopez R, Garcia E (1998) Characterization of the galU gene of Streptococcus pneumoniae encoding a uridine diphosphoglucose pyrophosphorylase: a gene essential for capsular polysaccharide biosynthesis. J Exp Med 188: 2047-2056.
    44. Chang HY, Lee JH, Deng WL, Fu TF, Peng HL (1996) Virulence and outer membrane properties of a galU mutant of Klebsiella pneumoniae CG43. Microb Pathog 20: 255-261.
    45. Bonofiglio L, Garcia E, Mollerach M (2005) Biochemical characterization of the pneumococcal glucose 1-phosphate uridylyltransferase (GalU) essential for capsule biosynthesis. Curr Microbiol 51: 217-221.
    46. Lai X, Wu J, Chen S, Zhang X, Wang H (2008) Expression, purification, and characterization of a functionally active Mycobacterium tuberculosis UDP-glucose pyrophosphorylase. Protein Expr Purif 61: 50-56.
    47. Zuccotti S, Zanardi D, Rosano C, Sturla L, Tonetti M, et al. (2001) Kinetic and crystallographic analyses support a sequential-ordered bi bi catalytic mechanism for Escherichia coli glucose-1-phosphate thymidylyltransferase. J Mol Biol 313: 831-843.
    48. Szumilo T, Drake RR, York JL, Elbein AD (1993) GDP-mannose pyrophosphorylase. Purification to homogeneity, properties, and utilization to prepare photoaffinity analogs. J Biol Chem 268: 17943-17950.
    49. Kapitonov D, Yu RK (1999) Conserved domains of glycosyltransferases. Glycobiology 9: 961-978.
    50. Wickstead B, Gull K, Richards TA (2010) Patterns of kinesin evolution reveal a complex ancestral eukaryote with a multifunctional cytoskeleton. BMC Evol Biol 10: 110.
    51. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, et al. (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.
    52. Goujon M, McWilliam H, Li W, Valentin F, Squizzato S, et al. (2010) A new bioinformatics analysis tools framework at EMBL-EBI. Nucleic Acids Res 38: W695-699.
    53. Sander C, Schneider R (1991) Database of homology-derived protein structures and the structural meaning of sequence alignment. Proteins 9: 56-68.
    54. Hobohm U, Scharf M, Schneider R, Sander C (1992) Selection of representative protein data sets. Protein Sci 1: 409-417.
    55. Holm L, Ouzounis C, Sander C, Tuparev G, Vriend G (1992) A database of protein structure families with common folding motifs. Protein Sci 1: 1691-1698.
    56. Page RD (2002) Visualizing phylogenetic trees using TreeView. Curr Protoc Bioinformatics Chapter 6: Unit 6 2.
    57. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, et al. (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33: 2233-2239.
    58. Bosco MB, Machtey M, Iglesias AA, Aleanzi M (2009) UDPglucose pyrophosphorylase from Xanthomonas spp. Characterization of the enzyme kinetics, structure and inactivation related to oligomeric dissociation. Biochimie 91: 204-213.
    59. Spadaccini R, Ercole C, Gentile MA, Sanfelice D, Boelens R, et al. (2012) NMR Studies on Structure and Dynamics of the Monomeric Derivative of BS-RNase: New Insights for 3D Domain Swapping. PLoS One 7: e29076.
    60. Brown K, Pompeo F, Dixon S, Mengin-Lecreulx D, Cambillau C, et al. (1999) Crystal structure of the bifunctional N-acetylglucosamine 1-phosphate uridyltransferase from Escherichia coli: a paradigm for the related pyrophosphorylase superfamily. EMBO J 18: 4096-4107.
    61. Pitout JD (2012) Extraintestinal Pathogenic Escherichia coli: A Combination of Virulence with Antibiotic Resistance. Front Microbiol 3: 9.
    62. Maltezou HC, Giakkoupi P, Maragos A, Bolikas M, Raftopoulos V, et al. (2009) Outbreak of infections due to KPC-2-producing Klebsiella pneumoniae in a hospital in Crete (Greece). J Infect 58: 213-219.
    63. Haryani Y, Noorzaleha AS, Fatimah AB, Noorjahan BA, Patrick GB, et al. (2007) Incidence of Klebsiella pneumonia in street foods sold in Malaysia and their characterization by antibiotic resistance, plasmid profiling, and RAPD-PCR analysis. Food Control 18: 847-853.
    64. Lamerz AC, Haselhorst T, Bergfeld AK, von Itzstein M, Gerardy-Schahn R (2006) Molecular cloning of the Leishmania major UDP-glucose pyrophosphorylase, functional characterization, and ligand binding analyses using NMR spectroscopy. J Biol Chem 281: 16314-16322.
    65. Patrick GL (2005) An Introduction To Medicinal Chemistry: Oxford University Press.
    66. Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35: W407-410.
    67. Sippl MJ (1993) Recognition of errors in three-dimensional structures of proteins. Proteins 17: 355-362.
    68. Laskowski RA (2001) PDBsum: summaries and analyses of PDB structures. Nucleic Acids Res 29: 221-222.
    69. Venkatachalam CM, Jiang X, Oldfield T, Waldman M (2003) LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model 21: 289-307.
    70. Hariprasad G, Kumar M, Srinivasan A, Kaur P, Singh TP, et al. (2011) Structural analysis of a group III Glu62-phospholipase A2 from the scorpion, Mesobuthus tamulus: Targeting and reversible inhibition by native peptides. Int J Biol Macromol 48: 423-431.
    71. Lee HJ, Ho MR, Bhuwan M, Hsu CY, Huang MS, et al. (2010) Enhancing ATP-based bacteria and biofilm detection by enzymatic pyrophosphate regeneration. Anal Biochem 399: 168-173.
    72. Irwin JJ, Shoichet BK (2005) ZINC--a free database of commercially available compounds for virtual screening. J Chem Inf Model 45: 177-182.
    73. Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng 8: 127-134.
    74. Ramachandran GN, Ramakrishnan C, Sasisekharan V (1963) Stereochemistry of polypeptide chain configurations. J Mol Biol 7: 95-99.
    75. Aragao D, Fialho AM, Marques AR, Mitchell EP, Sa-Correia I, et al. (2007) The complex of Sphingomonas elodea ATCC 31461 glucose-1-phosphate uridylyltransferase with glucose-1-phosphate reveals a novel quaternary structure, unique among nucleoside diphosphate-sugar pyrophosphorylase members. J Bacteriol 189: 4520-4528.
    76. Marolda CL, Valvano MA (1996) The GalF protein of Escherichia coli is not a UDP-glucose pyrophosphorylase but interacts with the GalU protein possibly to regulate cellular levels of UDP-glucose. Mol Microbiol 22: 827-840.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE