簡易檢索 / 詳目顯示

研究生: 王儀琳
Wang, Yi-Lin
論文名稱: 添加奈米銀線及銀顆粒對於染料敏化太陽能電池效率之影響
Effect of Adding Silver Nanowires and Nanodiscs on the Efficiency of Dye-Sensitized Solar Cell
指導教授: 林滄浪
胡瑗
Lin, Tsang-Lang
口試委員: 吳永俊
Yung-Chun Wu
陳燦耀
Tsan-Yao Chen
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 56
中文關鍵詞: 染料敏化太陽能電池奈米銀線奈米銀盤
外文關鍵詞: DSSC, silver nanowires, silver nanodiscs
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要研究添加奈米銀線以提升染料敏化太陽能電池中之效率。所用之奈米銀線用熱還原方法生成,其寬度約為100 nm而長度從數微米至約30微米,其表面再包覆上一層二氧化鈦以防止奈米銀線被電解液中的碘離子腐蝕或是在加熱燒結時熔成塊狀。藉由改變奈米銀線的參雜比例與二氧化鈦層的薄膜厚度來探討奈米銀線添加量對不同電極厚度的影響。實驗添加奈米銀線比例為1, 2, 3及4wt%,並利用旋轉塗佈3次、6次、9次、12次與15次增加薄膜厚度。研究結果顯示於膜厚約10 μm,添加奈米銀線比例為3 wt%時,其電流及轉換效率提升最大,效率可由4.68%提升至5.31%。由IV、EIS及IPCE量測分析結果可推論其效率提升主要源自於阻抗的降低,添加奈米銀線可提高電子的傳輸效率。而隨著薄膜厚度的增加或奈米銀線比例添加過高則效率降低。另外亦製備了奈米銀盤,大小約50 nm,厚度約20 nm,具有雙峰的光吸收峰,希望藉奈米銀盤於長波段的表面電漿共振作用對光電轉換效率上有所幫助。因產量低,只測試添加0.1 wt%的量,對電流有些許提升,但由於參雜的量過少提升的效果有限,由IPCE量測發現奈米銀盤有助於促進整體光電轉換。


    In this study, we focus on the effect of adding silver nanowires in the TiO2 electrode of the dye-sensitized solar cell. The silver nanowires were synthesized by Polyol process. The synthesized silver nanowires have a diameter about 100 nm and a wide distribution of lengths, from several microns to about 30 microns. The synthesized silver nanowires were coated with a thin layer of TiO2 to prevent erosion by the electrolyte and also to prevent the fuse of the nanowire during the annealing process. The amounts of the silver nanowires added to the TiO2 electrode is from 1 wt% to 4 wt% and the TiO2 film thickness was varied from 8μm to 30μm. It was found that adding 3 wt% silver nanowires for the 10 micron thick film achieve the highest efficiency. The efficiency is increased from 4.68% to 5.31%. According to the results of IPCE and EIS measurements, the improvement of efficiency can be attributed to the reduction of the internal impedances and the enhancement of the electron transport. For thicker films or higher amounts of added silver nanowires, the efficiency would decrease which could be due to the increase of light absorption. Other than the addition of silver nanowires, tests were also made with the addition of silver nanodiscs, which possesses double absorption peaks. Due to the small amounts of the synthesized silver nanodiscs, tests were made for adding only 0.1 wt% silver nanodiscs and it was found that the efficiency can be slight increased.

    摘要 i Abstract ii 致謝 iii 目錄 iv 表目錄 vii 圖目錄 viii 第一章 1 1.1簡介 1 1.1.1太陽能電池分類 1 1.1.2染料敏化太陽能電池 3 1.1.2.1二氧化鈦薄膜(TiO2) 6 1.1.2.2白金對電極 7 1.1.2.3染料敏化劑 7 1.1.2.4電解液 8 1.2研究動機 9 第二章 10 2.1奈米線/奈米顆粒於染料敏化太陽能電池之應用 10 2.2薄膜厚度對電性影響 13 2.3奈米金屬應用於染料敏化太陽能電池 15 2.4奈米銀線之製備 16 2.5奈米銀盤之製備 19 第三章 20 3.1實驗藥品 20 3.1.1合成奈米銀線及包覆二氧化鈦層 20 3.1.2合成奈米銀盤 20 3.1.3組裝染料敏化太陽能電池 21 3.2實驗流程 22 3.2.1奈米銀線的製程 22 3.2.2奈米銀盤的製程 23 3.2.3包覆二氧化鈦膠體 23 3.2.4二氧化鈦光陽極製作 24 3.2.5染料N719溶液 25 3.2.6電解液溶液 25 3.2.7白金對電極製作 25 3.2.8組裝染料敏化太陽能電池: 26 3.3實驗儀器 27 3.3.1電子顯微鏡(Electron Microscope, EM) 27 3.3.1.1掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 27 3.3.1.2穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 29 3.3.2 X光粉末繞射儀(X-ray Powder Diffraction, XRD) 30 3.3.3太陽光模擬器 32 3.3.4光電流轉換效率量測儀(IPCE) 32 3.3.5 電化學阻抗頻譜(Electrochemical Impedance Spectroscopy,EIS) 33 第四章 36 4.1奈米銀線性質分析 36 4.2奈米銀線加入染料敏化太陽能電池之影響 41 4.3奈米銀盤於染料敏化太陽能電池之應用 49 第五章 54 參考文獻 55

    ] M. Grätzel, Nature, 2001, 414, 338.
    [2] B. O'Regan, M. Grätzel, D. Fitzmaurice, J. Phys. Chem., 1991, 95, 10525.
    [3] M. Grätzel, Coordination Chemistry Reviews, 1991, 111, 167.
    [4] C. Klein, Md. K. Nazeeruddin, D. Di Censo, P. Liska, M. Grätzel, Inorganic Chemistry, 2004, 43, 4216.
    [5] 張正華,李陵嵐,葉楚平,楊平華 著,有機與塑膠太陽能電池,五南圖書出版社, 2008年。
    [6] M. Grätzel, Accounts of Chemical Research, 2009, 42, 1788.
    [7] J. Ferber, R. Stangl, J. Luther, Solar Energy Materials and Solar Cells, 1998, 53, 29.
    [8] B. Sun, Alexandre V. Vorontsov, Panagiotis G. Smirniotis, Langmuir, 2003, 19, 3151.
    [9] J. Desilvestro, M. Grätzel, L. Kavan, J. Moser, J. Am. Chem. Soc., 1985, 107, 2988.
    [10] http://www.solaronix.com/products/dyes/
    [11] M. Law, L. Greene, J. C. Johnson, R. Saykally, P. Yang, Nat. Mater., 2005, 4, 455.
    [12] Bing T.; Yiying W. J. Phys. Chem. B., 2006, 110, 15932.
    [13] Y. Zhang, J. Khamwannah, H. Kim, S-Y. Noh, H. Yang, S. Jin, Nanotechnology, 2013, 24, 45401.
    [14] J. Jiu, S. Isoda, F. Wang, M. Adachi, J. Phys. Chem. B., 2006, 110, 2087.
    [15] Z.-S. Wang, H. Kawauchi, T. Kashima, H. Arakawa, Coordination Chemistry Reviews, 2004, 248, 1381.
    [16] H. Chang, C.-H. Chen, M.-J. Kao, S.-H. Chien, C.-Y. Chou, Applied Surface Science, 2013, 275, 252.
    [17] J. Qi, X. Dang, P. T. Hammond, A. M. Belcher, Acs. Nano., 2011, 5, 7108.
    [18] Y. Sun, Y. Yin, B. T. Mayers, T. Herricks, Y. Xia, Chem. Mater., 2002, 14, 4736.
    [19] Y. Gao, P. Jiang, D.-F. Liu, H.-J. Yuan, X.-Q. Yan, Z.-P. Zhou, J.-X. Wang, L. Song, L.-F. Liu, W.-Y. Zhou, G. Wang, C.-Y. Wang, S.-S. Xie, J. Phys. Chem. B., 2004, 108, 12877.
    [20] X. Jiang, Q. Zeng, A. Yu, Nanotechnology, 2006, 17, 4929.
    [21] T.-Y. Chen, C.-M. Fan, J.-Y. Wu, T.-L. Lin, J. Chin. Chem. Soc., 2009, 56, 1244.
    [22] http://elearning.stut.edu.tw/caster/3/no3/3-4.htm.
    [23] 汪建民 著,材料分析,中國材料科學學會, 1998年。
    [24] 科誠科技股份有限公司,太陽電池光譜響應/量子效應/光電流轉換效率量測系統使用手冊,2008年。
    [25] P. Ramasamy, D.-M. Seo, S.-H. Kim, J. Kim, Journal of Materials Chemistry, 2012, 22, 11651.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE