研究生: |
林偉恩 Lin, Wei-En |
---|---|
論文名稱: |
CoFe0.5-2.5MnTi0.5-2.5VZr與AlMgNi0.3-1.0TiZr 高熵儲氫合金之研究 Hydrogen Storage in CoFe0.5-2.5MnTi0.5-2.5VZr and AlMgNi0.3-1.0TiZr High-Entropy Alloys |
指導教授: |
陳瑞凱
Chen, Swe-Kai 葉均蔚 Yeh, Jien-Wei |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 158 |
中文關鍵詞: | 儲氫高熵合金 、CoFexMnTiyVZr & AlMgNiwTiZr 、非晶化抑制元素 、PCI 、C14 Laves相 、介金屬化合物 |
外文關鍵詞: | Hydrogen-storage high-entropy alloys, CoFexMnTiyVZr &, amorphization inhibitor, PCI, C14 Laves phase, Intermetallics |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究第一部份以等莫耳CoFeMnTiVZr多元高熵合金為基礎,以Fe與Ti變量 (Fex及Tiy合金) 作元素改質及溫度改變,以探討真空電弧熔煉鑄造態非等莫耳合金CoFexMnTiyVZr (簡稱E6合金) 的吸放氫行為。第二部份以創新的等莫耳含鎂AlMgNiTiZr高熵合金為基礎,以Ni變量作元素改質及溫度改變,探討輕型機械合金化AlMgNiwTiZr高熵合金 (簡稱E5合金) 的吸放氫行為。先以X光繞射儀分析晶體結構,掃描電鏡分析微結構,EDS測定合金組成,DSC量測金屬氫化物的放氫溫度,再以PCI及動力曲線,量測E5及E6合金吸放氫行為。
重要結論如下: 鑄造態E6合金,最大儲氫量約2 wt%,平台壓集中在1 - 5 atm之間,t0.9 (達到最大儲氫量百分之九十所需的時間) 約在100秒以內,遲滯值約在1以內,晶粒大小吸氫前分布在17.1 nm - 50.3 nm,吸氫後分布在14.8 nm - 46.1 nm,體積膨脹率約在3 %以內,晶體結構主要為C14 Laves相,元素過度添加,皆有元素態析出,熱力學分析顯示,E6合金分布趨勢與AB2型合金相似。機械合金化E5合金,球磨八小時即已合金化,各元素分布均勻,最大儲氫量約1.5 wt%,動力學達飽和儲氫量時間較長、t0.9約10,000秒,平台壓分布於5 - 12 atm之間,晶體結構由數種介金屬化合物所構成,球磨時間越長以及Ni含量減少,越容易發生非晶結構,因此Ni在E5合金內為非晶化抑制元素。
The first part of this study investigates behavior of hydrogen absorption and desorption of non-equal-molar vacuum-arc-remelted as-cast CoFexMnTiyVZr (E6 alloys) based on their equal-molar counterpart by varying x (Fex alloys) and y (Tiy alloys) contents as well as measuring temperature. The second part does the same things as the first part but only changing the alloys to mechanical-alloying (MA) light-weighted AlMgNiwTiZr (E5 alloys). Experiments include XRD, SEM, EDS, DSC, PCI, and kinetics of hydrogen absorption and desorption for determination of crystal structure, microstructure, phase composition, hydrogen desorption temperature, and behavior of hydrogen absorption and desorption of E6 and E5 alloys, respectively.
Primary conclusions are summarized as follows: The as-cast E6 alloys possess maximal hydrogen storage capacity of 2 wt %, plateau pressure in PCIs of 1 – 5 atm, time to 90 % of maximal capacity, t0.9, of about 100 s, values of hysteresis of less than 1, grain size before and after hydrogen absorption cycle of 17.1 nm - 50.3 nm, and 14.8 nm - 46.1 nm, respectively, volume expansion mostly of less than 3 %, crystal structure of C14 Laves phase for both before and after cycle states, elemental precipitation for excessive addition of Fe and Ti, and similar distribution as the AB2 alloys in the thermodynamic ΔH vs. (H/M)max plot. MA-E5 alloys have become alloys after 8-h MA with homogeneous distribution of composition, and possess maximal hydrogen storage capacity of 1.5 wt %, plateau pressure in PCIs of 5 – 12 atm, t0.9 of about 10,000 s, crystal structure composed of several intermetallics, property of easy amorphization for prolonged MA and for alloys containing less amount of Ni. Therefore Ni is an amorphization inhibitor in E5 alloys.
1.Dincer I. Thermodynamics, exergy and environmental impact. Proceedings of the ISTP-11, the 11th International Symposium on Transport Phenomena, 29 November–3 December 1998, Hsinchu, Taiwan, (1998b) 121
2.Dincer I, Rosen MA. The intimate connection between exergy and the environment. In: Bejan A, Mamut E, editors. Thermodynamic optimization of complex energy systems. The Netherlands: Kluwer Academic, (1999) 221
3.Anders Andreasen, PhD thesis, 2005
4.Momirlan M, Veziroglu TN. Renewable Sustainable Energy Rev., 6 (2002) 141
5.大角泰章, 水素吸藏合金, 化學工業社, (日本東京, 1993).
6.A. Zuttel, L. Schlapbach, Nature, 414 (2001) 353
7.http://www.hydrogen.energy.gov/.
8.W. Grochala, P. P. Edwards, Chem. Rev., 104 (2004) 1283
9.a) F. SchMth, B. Bogdanovic, M. Felderhof, Chem. Commun. 2004, 37, p. 2249–2258; b) S. Orimo, Y. Nakamori, J. R. Eliseo, A. Zuttel, C. M. Jensen, Chem. Rev., 107 (2007) 4111
10.林俊廷, 國立清華大學材料科學工程研究所碩士論文, (2007)
11.許臻豪, 國立清華大學材料科學工程研究所碩士論文, (2008)
12.T. Gramham, Philosophical Transactions of the Royal Society of London, 156 (1866) 399
13. J. J. Reilly, Hydrogen: It’s Technology and Implications, 2 (1977) 13
14.H. Zijlstra, F. F. Westendorp, Solid State Communications, 7(12) (1969) 857
15.G. Sandrock, J. Alloys and Compounds, 293-295 (1999) 877-888.
16.K.H.J. Buschow and H.H. van Mal, J. Less-Common Metals, 29 (1972) 203.
17.J. H. N. van Vucht, F. A. Kuijpers, H. C. M. Bruning, Philips Research Reports, 25 (1970) 133
18.A. Züttel, P. Wenger, S. Rentsch, P. Sudan, Ph. Mauron, Ch. Emmenegger, Journal of Power Sources, 118 (2003) 1
19.A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, and M. J. Heben, Nature (London), 386 (1997) 377
20.L. Schlapbach, A. Züttel, Nature, 414 (2001) 353
21.J. E. Huheey, “Inorganic Chemistry”, Harper & Row, New York, (1983)
22.A. Züttel, in H2net seminar (University of Birmingham, Birmingham, (2004).
23.M. Martin, C. Gommel, C. Borkhart, E. Fromm, Journal of Alloys and Compounds, 238 (1996) 193
24.Pinkerton and Wicke, The Industrial Physicist (2004) 20
25.Anders Andreasen, Hydrogen Storage Materials with Focus on Main Group I-II Elements, PhD thesis, 2005
26.A. Zaluska, L. Zaluski, J.O. Strom–Olsen, Journal of Alloys and Compounds, 288 (1999) 217
27.A. Zaluska, L. Zaluski, J.O. Strom–Olsen, J. Alloys & Compounds, 253-254 (1997) 70
28.Borislav Bogdanovic, Manfred Schwickard, J. Alloys & Compounds, 253-254 (1997) 1
29.H. Fujii, et al., Physica B, 383 (2006) 45–48
30.Q. Zheng, H. Xu, Y. Cui, G. Qian, 材料導報, 22 (2008) 106
31.Mohamed Eddaoudi, Jaheon Kim, Nathaniel Rosi, David Vodak, Joseph Wachter, Michael O’Keeffe, Omar M. Yaghi, Science, 295 (2002) 469
32.Anne Pichon, Ana Lazuen-Garay and Stuart L. James, CrystEngComm, 8 (2006) 211
33.Bernard F. Hoskins, and Richard Robson, J. Am. Chem. SO, 111 (1989) 5962
34.M. Felderhoff, Phys. Chem. Chem. Phys., 9 (2007) 2643
35.Hailian Li, Mohamed Eddaoudi, M. O'Keeffe, O. M. Yaghi, Nature, 402 (1999) 276
36.Nathaniel L. Rosi, Juergen Eckert, Mohamed Eddaoudi, David T. Vodak, Jaheon Kim, Michael O’Keeffe, Omar M. Yaghi, Science, 300 (2003) 1127
37.Li et al. in “Chemistry of Carbon Nanotubes”, Ch. 10 Eds Basiuk and Basiuk, American Scientific Publishers (2007)
38.S.S. Mao, Int. J. Energy Res., 31 (2007) 619
39.Ozaki T., Y. Zhang, M. Komaki, C. Nishimura. International Journal of Hydrogen Energy, 28 (2003) 1229
40.O’Brien J., R. Hughes, J. Hisek. Surface Coating Technology, 253 (2001) 142
41.H. Sakaguchi, N. Taniguchi, H. Seri, J. Shiokawa and G. Adachi. J. Appl. Phys. 64 (1988) 888
42.T. Sakai, H. Ishikawa, H. Miyamura, S. Yamada, T. Iwasaki, J. Electrochem. Soc., 138 (1991) 908
43.L. Huang, H. Gong, W. Gao, Thin Solid Films, 339 (1999) 78
44.J. H. N. van Vucht, F. A. Kuijpers, H. C. M. Bruning, Philips Research Reports, 25 (1970) 133
45.J. H. Wemick, S. Geller, Acta Crystallographica, 12 (1959) 662
46.A. Pebler, E. A. Gulbransen, Electrochemical Technology, 4 (1966) 211
47.C. E. Lundin, F. E. Lynch, C. B. Magee, Journal of Less-Common Metals, 19 (1977) 56
48.J. J. Reilly, R. H. Wiswall Jr., Inorganic Chemistry, 13 (1974) 218
49.A. Pebler, E. A.Gullbransen, Transactions of the Metallurgical Society of AIME, 239 (1967) 1593
50.T. Sakai, H. Yoshinaga, H. Miyamura, H. Ishikawa, Journal of Alloys and Compounds, 180 (1992) 37
51.http://cst-www.nrl.navy.mil/lattice/struk/laves.html
52.R. P. Elliot, W. Rostocker, Transaction of American Society of Metal, 50 (1958) 617
53.D. Shaltiel, I. Jacob, D. Davidov, Journal of Less-Common Metals, 53 (1977) 117
54.Ming Au, F. Pourarian, S. G. Sankar, W. E. Wallace, Lian Zhang, Materials Science and Engeering B, 33 (1995) 53
55.J. J. Reilly, J. R. Johnson, R. H. Wiswall, Jr. BNL, Reports, 20791 (1975) ; 21322 (1976)
56.T. Nambu , H. Ezaki, H. Yukawa, M. Morinaga, Journal of Alloys and Compounds, 293–295 (1999) 213
57.W. Schäfer, G. Wisswall, T. Schober, Materials Reseach Bulletin, 13 (1974) 218
58.S. V. Mitrokhin, V. N. Verbetsky, R. R. KajumovHong Cunmao, Zhang Yufen, Journal of Alloys and Compounds, 199 (1993) 155
59.Jianxin Ma, Hongge Pan, Xinhua Wang, Changpin Chen, Qidong Wang, International Journal of Hydrogen Energy, 25 (2000) 779
60.J. J. Reilly, R. H. Wiswall, Inorganic Chemistry, 7 (1968) 2254
61.K. Ikeda, S. Orimo, A. Züttel, L. Schlapbach, H. Fujii, Journal of Alloys and Compounds, 280 (1998) 279
62.P. Wang, A. M. Wang, H. F. Zhang, B. Z. Ding, Z. Q Hu, Journal of Alloys and Compounds, 313 (2000) 218
63.Q. Li, Q. Lin, K. C. Chou, L. J. Jiang, F. Zhan, Journal of Materials, 19(10) (2004) 2871
64.P. Selvam, B. Viswanathan, C. S. Swamy, V. Srinvasan, International Journal of Hydrogen Energy, 11 (1986) 169
65.J. Zhu, J. Zhang, F. Fang, S. Zheng, C. Chen, D. Sun, 稀有金屬材料與工程, 37 (2008) 1377
66.J. Zhang, F. Fang, S. Zheng, J. Zhu, C. Chen, D. Sun, 稀有金屬材料與工程 37 (2008) 926
67.Dunlap B D, Viccaro P J, Shenoy G K. J Less-Common Met[J], 74 (1980) 75
68.Latroche M et al. J Alloys Compd[J], 2003, 356~357: 461
69.Latroche M et al. J Solid State Chemistry[J], 173 (2003) 236
70.Y. Nakamura, E. Akiba, Journal of Alloys and Compounds, 311 (2000) 317
71.X.B. Yu, S.L. Feng, Z. Wu, B.J. Xia, N.X. Xu, Journal of Alloys and Compounds, 393 (2005) 129
72.L. Schlapbach, T. Riesteer, Applied Physics A, 32 (1983) 169
73.H. Züchner, G. Kirch, Journal of Less-Common Metals, 99 (1984) 143
74.H. C. Kim, J. Y. Lee, Jounral of Less-Common Metals, 105 (1985) 247
75.P. Tessier, H. Enoki, M. Bououdina, E. Akiba, Journal of Alloys and Compounds, 268 (1998) 285
76.M. Martin, C. Gommel, C. Borkhart, E. Fromm, Journal of Alloys and Compounds, 238 (1996) 193
77.K. C. Chou, Q. Li, Q. J. Jiang, K. D. Xu, Journal of Alloys and Compounds, 30 (2005) 301
78.P. S. Rudman, Journal of Less-Common Metals, 89 (1983) 93
79.C. N. Park, J. Y. Lee, Journal of Less-Common Metals, 91 (1983) 189
80.H. S. Chung, J. Y. Lee, Journal of Less-Common Metals, 123 (1986) 209
81.洪國治, 氫能科技與鎳氫化物蓄電池研討會講議, April 28, (1993) 304
82.A. J. Kumnick, H. H. Johnson, Acta Metallurgica, 25 (1977) 891
83.D. K. Kuhn, Acta Metallurgica, 28 (1980) 33
84.J. K. Wu, International Journal of Hydrogen Energy, 17 (1992) 917
85.A. Zaluska*, L. Zaluski, J.O. Stro‥m-Olsen, Journal of Alloys and Compounds, 289 (1999) 197
86.胡子龍, 貯氫材料
87.J. Huot, G. Liang, S. Boily, A. Van Neste, R. Schulz, Journal of Alloys and Compounds, 293-295 (1999) 495
88.A. Zaluska, L. Zaluski, J.O. Ström-Olsen, Appl. Phys. A 72 (2001) 157
89.P.K. Huang, J.W. Yeh, T.T. Shun, and S.K. Chen, Advanced Engineering Materials, 6 (2004) 74
90.C.Y. Hsu, J.W. Yeh, S.K. Chen, and T.T. Shun, Metallurgical and Materials Transactions, 35A (2004) 1465
91.J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H Tsau, and S.Y. Chang, Advanced Engineering Materials, 6 (2004) 299
92.J.W. Yeh, S.K. Chen, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H Tsau, and S.Y. Chang, Metallurgical and Materials Transactions, 35A (2004) 2533
93.T.K. Chen, T.T. Shun, J.W. Yeh, and M.S. Wong, Surface and Coatings Technology, 188-189 (2004) 193
94.C.J. Tong, S.K. Chen, J.W. Yeh, T.T. Shun, C.H Tsau, S.J. Lin, and S.Y. Chang, Metallurgical and Materials Transactions, 36A (2005) 881
95.C.J. Tong, M.R Chen, S.K. Chen, J.W. Yeh, T.T. Shun, S.J. Lin, and S.Y. Chang, Metallurgical and Materials Transactions, 36A (2005) 1263
96.Y.Y. Chen, T, Duval, U.D. Hung, J.W. Yeh, and H.C. Shih, Corrosion Science, 47 (2005) 2679
97.Y.Y. Chen, T, Duval, U.D. Hung, J.W. Yeh, and H.C. Shih, Corrosion Science, 47 (2005) 2257
98.陳彥羽, 洪育德, 葉均蔚, 施漢章, 防蝕工程, 18 (2004) 25
99.葉均蔚, 陳瑞凱, 科學發展, 337 (2004) 16
100.葉均蔚, 陳瑞凱, 林樹均, 工業材料, 224 (2005) 71
101.A.L. Mackay, Crystallography Reports, 46 (2001) 524
102.J.S. Benjamin, Metallurgical Transaction, 1 (1970) 2943
103.A.E. Ermakov, E.E. Yurchikov, and V.A. Barinov, Phys. Met. Metallogr., 52 (1981) 50
104.C.C. Koch, O.B. Cavin, C.G. McKamey, and J.O. Scarbrough, Appl. Phys. Lett., 43 (1983) 1017
105.C. Suryanarayana, Progess in Materials Science, 46 (2001) 1
106.X. B. Yu, Z. Wu, T. Huang, J. Cheng, B. Xia, N. Xu., International Journal of Hydrogen Energy, 29 (2004) 81
107.V. K. Sinba, F. Pourarian, W. E. Wallance, Journal of Physical Chemistry, 86 (1982) 4952
108.X. B. Yu, Z. X. Yang, S. L. Feng, Z. Wu, N. X. Xu, International Journal of Hydrogen Energy, 31 (2006) 1176
109.X. B. Yu, Z. X. Yang, S. L. Feng, Z. Wu, N. X. Xu, International Journal of Hydrogen Energy, 31 (2006) 1176
110.M. Kandavel, S. Ramaprabhu, Journal of Physics : Condensed Matter, 15 (2003) 7501
111.J. F. Herbst, Journal of Alloys and Compounds, 337 (2002) 99
112.D. Shaltiel, I. Jacob, D. Davidov, Journal of Less-Common Metals, 53 (1977) 117
113.Y. Osumi, Hydrogen-Storage Alloy Properties and Appications, Agnetechnical Center, Tokyo, in Japanese, 1993
114.M. V. Simičić, M. Zdujić, R. Dimitrijević, Lj. Nikolić-Bujanović, N. H. Popović, Journal of Power Sources, 158 (2006) 730
115.G. Liang, J. Huot , S. Boilyb, A. Van Nestea, R. Schulzb, Journal of Alloys and Compounds, 282 (1999) 286
116.M. V. C. Sastri (chief ed.), B. Viswanathan, S. Srinivasa Murthy (associate eds.), Metal Hydrides: fundamentals and applications, (Narosa Publishing House, New Delhi, 1998
117.D. Shaltiel, I. Jacob, D. Davidov, Journal of Less-Common Metals, 53 (1977) 117
118.Y. Yan, Y. Chen, H. Liang, C. Wu, M. Tao, T. Mingjing, Journal of Alloys and Compounds, 426(1-2) (2006) 253
119.A. K. Singh, Ajay K. Singh, O. N. Srivastava, International Journal of Hydrogen Energy, 20(8) (1995) 647
120.S. W. Cho, H. Enoki, E. Akiba, Journal of Alloys and Compounds, 307 (2000) 304