研究生: |
曾憲志 Tseng, Hsien-Chih |
---|---|
論文名稱: |
軟性氣動式複合制動機械臂的分析與設計 Analysis and Design of Soft Composite Pneumatic Actuators and Robotic Arms |
指導教授: |
蘇育全
Su, Yu-Chuan |
口試委員: |
陳紹文
Chen, Shao-Wen 林洸銓 Lin, Kuang-Chuan |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 三維列印 、有限元素分析 、單氣囊制動器 、三氣囊整合的機械臂系統 |
外文關鍵詞: | 3D Printing, COMSOL Multiphysics, Soft Pneumatic Actuators, Soft Pneumatic Grippers with Arrays of Bladder and Mesh |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文整合了電腦輔助設計程式Solidworks、多重物理模擬計算程式COMSOL Multiphysics、以及數值演算分析程式MATLAB,構建出一套能夠有效分析軟性氣動式複合制動器的流程,估算其受壓力產生位移與力量輸出的特性,並搭配實驗量測驗證其結果的正確性。本論文的目標在設計開發新型氣壓式制動器,以三維列印的外層束套限制內建氣囊的加壓變形,原型的建構過程除幾何設計外,還包含材料的選擇、加工及系統的組裝等,這些工作都能透過上述Solidworks + COMSOL Multiphysics + MATLAB的整合流程分析並優化。相較於耗費數小時到數日的實物製作與驗證,我們已經可以利用上述整合流程在一小時之內,有效評估個別設計的工作表現,綜合評估多項設計方案後再擇優進行實物製作與驗證,如此一來設計開發的週期與相關成本都可大幅縮減。
除了單氣囊制動器的分析與設計,本論文也進一步開發出三氣囊整合的機械臂系統,透過三氣囊的壓力差異與相對關係,能夠產生更多運動自由度,以及更複雜的位移與力量輸出。藉由上述整合流程我們已經取得三氣囊整合機械臂的詳細運動特性,據此可以預測機械臂的工作表現,一旦累積足夠數量的資訊,這些分析所得的結果可進一步搭配深度學習的演算法,針對功能性的目標產生優化的幾何設計、材料選擇、加工、以及系統組裝的方案。本論文的成果將有助於軟性氣動式制動器與機械臂其設計自動化的實現,縮減開發的週期與相關成本,具有極高的學術價值與工程應用潛力。
We have successfully demonstrated the analysis and design of soft pneumatic actuators and robotic arms fabricated using 3D printing and packaging. Composite structures of netted elastomer meshes surrounding PDMS bladders are employed to realize the desired actuation, including contraction, elongation, bending, twisting, and their combinations. In addition, a new type of soft pneumatic grippers with arrays of bladder and mesh are integrated and tailored to yield desired multi-DOF locomotion and force outputs. Inspired by nature, engineers have begun to explore the design and control of soft actuators and robots composed of compliant materials. These actuators and robots have continuously deformable structures that result in a relatively large number of degrees of freedom compared with their hard-bodied counterparts. The key challenge for creating soft machines that achieve their full potential is the analysis and design of controllable soft bodies, while 3-D printing and packaging are used to build the soft machines. SolidWorks, COMSOL Multiphysics, and MATLAB are integrated and employed to facilitate the analysis, design and optimization processes. Meanwhile, prototype characterization are employed to validate and improve the analysis and design process. As such, we can predict the performance of each individual design, and all the information collected could be further utilized by varying deep learning algorithms to synthesize designs with sophisticated functions for diverse applications
1. Daerden, F., & Lefeber, D. (2002). Pneumatic artificial muscles: actuators for robotics and automation. European journal of mechanical and environmental engineering, 47(1), 11-21.
2. Huang, R. C., & Anand, L. (2005). Non-linear mechanical behavior of the elastomer polydimethylsiloxane (PDMS) used in the manufacture of microfluidic devices.
3. Kim, B., Lee, S. B., Lee, J., Cho, S., Park, H., Yeom, S., & Park, S. H. (2012).A comparison among Neo-Hookean model, Mooney-Rivlin model, and Ogden model for chloroprene rubber.International Journal of Precision Engineering and Manufacturing, 13(5), 759-764.
4. Mooney, M. (1940). A theory of large elastic deformation.Journal of applied physics, 11(9), 582-592
5. Rivlin, R. S., & Saunders, D. W. (1951). Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 243(865), 251-288.
6. Yu, Y. S., & Zhao, Y. P. (2009). Deformation of PDMS membrane and microcantilever by a water droplet: Comparison between Mooney–Rivlin and linear elastic constitutive models. Journal of colloid and interface science, 332(2), 467-476.
7. Kumar, N., & Rao, V. V. (2016). Hyperelastic Mooney-Rivlin model: determination and physical interpretation of material constants. Parameters, 2(10), 01.
8. Daerden, F., & Lefeber, D. (2001). The concept and design of pleated pneumatic artificial muscles. International Journal of Fluid Power, 2(3), 41-50.
9. Krishnan, G., Bishop-Moser, J., Kim, C., & Kota, S. (2015). Kinematics of a generalized class of pneumatic artificial muscles. Journal of Mechanisms and Robotics, 7(4), 041014.
10. Udupa, G., Sreedharan, P., Sai Dinesh, P., & Kim, D. (2014). Asymmetric bellow flexible pneumatic actuator for miniature robotic soft gripper. Journal of Robotics, 2014.
11. Marchese, A. D., Katzschmann, R. K., & Rus, D. (2014, September). Whole arm planning for a soft and highly compliant 2d robotic manipulator. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (pp. 554-560). IEEE.
12. Drotman, D., Jadhav, S., Karimi, M., Dezonia, P., & Tolley, M. T. (2017, May). 3D printed soft actuators for a legged robot capable of navigating unstructured terrain. In 2017 IEEE International Conference on Robotics and Automation (ICRA) (pp. 5532-5538). IEEE.
13. Kalisky, T., Wang, Y., Shih, B., Drotman, D., Jadhav, S., Aronoff-Spencer, E., & Tolley, M. T. (2017, September). Differential pressure control of 3D printed soft fluidic actuators. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 6207-6213). IEEE.
14. Shepherd, R. F., Ilievski, F., Choi, W., Morin, S. A., Stokes, A. A., Mazzeo, A. D., ... & Whitesides, G. M. (2011). Multigait soft robot. Proceedings of the national academy of sciences, 108(51), 20400-20403.
15. 劉凌瑛,「三維複合功能結構的快速成型與整合技術」,國立清華大學工程與系統科學系,碩士論文,中華民國107年