簡易檢索 / 詳目顯示

研究生: 蘇中英
Su, Chung-Ying
論文名稱: 超奈米晶鑽石奈米碳管雙層材料之場發射特性應用於手持式常壓電漿產生器研究
Study on field emission properties of UNCD/CNTs double-layered materials and the application for handheld atmospheric pressure plasma generator
指導教授: 蔡宏營
Tsai, Hung-Yin
口試委員: 曾仕君
Tseng, Shih-Chun
葉孟考
Yeh, Meng-Kao
林啟瑞
Lin, Chii-Ruey
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 100
中文關鍵詞: 場發射奈米碳管超奈米晶鑽石常壓電漿
外文關鍵詞: field emission, carbon nanotubes, ultrananocrystalline diamond, atmospheric pressure plasma
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究所開發之手持式常壓電漿產生器俱備體積小、不易過熱、易於操作、低成本之優勢,可靈活應用於各項領域,包括物件表面電漿處理,或是外加於其它設備上。
    透過施加外加電場使場發射陰極端釋放出電子,可以增加電子於環境中與氣體分子碰撞之機率,更有效率的產生電漿。而為了降低能量消耗,場發射陰極端採用碳系材料。碳系材料擁有較低的場發射起始電場,有利於場發射效應的產生。
    本研究利用具有優異場發射能力的奈米碳管(carbon nanotubes, CNTs),並且於奈米碳管之上成長具有優異散熱能力超奈米晶鑽石(ultrananocrystalline diamond, UNCD),形成超奈米晶鑽石/奈米碳管雙層材料。透過調整奈米碳管觸媒濃度、奈米碳管成長參數、奈米鑽石懸浮液濃度以及超奈米晶鑽石成長參數嘗試找出場發射表現較為理想之組合。根據實驗結果,其場發射起始電場最低可達1.81 V/μm,壽命可超過一百小時。
    在長時間運作下,由於具備水冷系統,經過改良後之裝置其結構內溫度穩定,散熱效果良好,有效增加裝置使用壽命,使用安全性亦獲得提升。


    The purpose of this study is to fabricate a field emission enhanced handheld atmospheric pressure plasma generator with the advantages of small size, low heat accumulation, simple structure and inexpensive cost. This device can be used on surface modification or combined with other equipment.
    To enhance the efficiency of plasma generation, it is necessary to increase the probability of colliding between electrons and gas molecules. By applying an external electric field, the emission of electrons from cathode can be increased. To reduce the consumption of energy, carbon materials are used as the material of cathode due to their good field emission properties.
    Because of low turn-on field of carbon nanotubes (CNTs) and well thermal conductivity of ultrananocrystalline diamond (UNCD), we combined those two carbon materials as UNCD/CNT double-layered materials in order to reduce the heat accumulation and protect CNT during plasma generation. The field emission properties can be improved by adjusting the CNT catalyst, nanodiamond suspension and the parameters of growing CNT and UNCD. The turn-on field of UNCD/CNT double-layered materials is 1.81 V/μm, and the lifetime is more than 100 hours.
    In addition, the exist of the cooling system can maintain the device operating at lower temperature effectively. Due to the improvement of heat dissipation, the lifetime and safety of the device has been improved.

    摘要 I Abstract II 致謝 III 目錄 VI 圖目錄 X 表目錄 XVII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 1 第二章 文獻回顧 3 2.1 電漿 3 2.1.1 電漿基本原理 3 2.1.2 非熱平衡電漿與熱平衡電漿 5 2.1.3 常壓電漿源 6 2.2 場發射效應 11 2.2.1 場發射基本理論 11 2.2.2 場發射端點尺寸效應 12 2.2.3 場發射屏蔽效應 17 2.3 鑽石 23 2.3.1 鑽石基本性質 23 2.3.2 鑽石薄膜分類 24 2.3.3 鑽石薄膜成核方式 25 2.3.4 鑽石薄膜製備 27 2.3.5 鑽石薄膜發射特性 30 2.4 奈米碳管 32 2.4.1 奈米碳管簡介 32 2.4.2 奈米碳管製備方式 33 2.4.3 奈米碳管場發射性質 35 2.5 奈米碳管/鑽石複合材料 37 2.6 手持式常壓電漿產生器 38 第三章 研究方法 40 3.1 實驗流程 40 3.2 常壓電漿系統設計 41 3.2.1 手持式常壓電漿產生器結構改良 41 3.2.2 氣體供給系統 46 3.2.3 電源供應器 46 3.2.4 電漿測試參數及檢測 47 3.3 場發射陰極材料製程 47 3.3.1 試片前處理 47 3.3.2 溶膠凝膠法製備鐵粒子觸媒與旋轉塗佈 47 3.3.3 奈米碳管(CNT)製備 48 3.3.4 奈米鑽石懸浮液調配 49 3.3.5 兩步驟旋轉塗佈法塗佈奈米鑽石懸浮液 50 3.3.6 超奈米晶鑽石/奈米碳管雙層材料(UNCD/CNT)製備 50 3.4 實驗儀器與材料 52 3.4.1 微波電漿輔助化學氣相沉積系統 52 3.4.2 掃描式場發射電子顯微鏡(FESEM, JSM-7000F) 54 3.4.3 場發射量測儀 55 3.4.4 拉曼光譜儀 56 3.4.5 實驗用氣體與藥品材料 58 第四章 研究結果與討論 59 4.1 超奈米晶鑽石/奈米碳管雙層材料製備 59 4.1.1 奈米碳管製備 59 4.1.2 旋轉塗佈法沉積奈米鑽石晶種 62 4.1.3 超奈米晶鑽石製備 66 4.2 碳材料之場發射特性 72 4.2.1 奈米碳管與超奈米晶鑽石場發射特性 73 4.2.2 超奈米晶鑽石/奈米碳管雙層材料場發射特性 74 4.3 手持式常壓電漿產生器 79 4.3.1 純銅陰極產生電漿之結果 80 4.3.2 超奈米晶鑽石/奈米碳管雙層材料陰極產生電漿之結果 83 4.3.3 手持式常壓電漿產生器改良及測試 88 第五章 結論與未來展望 93 5.1 結論 93 5.2 未來展望 94 參考文獻 96

    [1] W. Crookes, "On radiant matter; a lecture delivered to the British Association for the Advancement of Science," British Association for the Advancement of Science, vol, pp. 241-262, 1879.
    [2] I. Langmuir, "Oscillations in ionized gases," Proceedings of the National Academy of Sciences, vol. 14, no. 8, pp. 627-637, 1928.
    [3] A. Schutze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, "The atmospheric-pressure plasma jet: a review and comparison to other plasma sources," IEEE Transactions on Plasma Science, vol. 26, no. 6, pp. 1685-1694, 1998.
    [4] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, "Atmospheric pressure plasmas: A review," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 61, no. 1, pp. 2-30, 2006.
    [5] G. Selwyn, H. Herrmann, J. Park, and I. Henins, "Materials Processing Using an Atmospheric Pressure, RF‐Generated Plasma Source," Contributions to Plasma Physics, vol. 41, no. 6, pp. 610-619, 2001.
    [6] H. Koinuma, H. Ohkubo, T. Hashimoto, K. Inomata, T. Shiraishi, A. Miyanaga, and S. Hayashi, "Development and application of a microbeam plasma generator," Applied Physics Letters, vol. 60, no. 7, pp. 816-817, 1992.
    [7] J. Jeong, S. Babayan, V. Tu, J. Park, I. Henins, R. Hicks, and G. Selwyn, "Etching materials with an atmospheric-pressure plasma jet," Plasma Sources Science and Technology, vol. 7, no. 3, pp. 282-285, 1998.
    [8] U. Kogelschatz, "Dielectric-barrier discharges: their history, discharge physics, and industrial applications," Plasma Chemistry and Plasma Processing, vol. 23, no. 1, pp. 1-46, 2003.
    [9] A. V. Nastuta, I. Topala, C. Grigoras, V. Pohoata, and G. Popa, "Stimulation of wound healing by helium atmospheric pressure plasma treatment," Journal of Physics D: Applied Physics, vol. 44, no. 10, p. 105204, 2011.
    [10] J. S. Chang, P. A. Lawless, and T. Yamamoto, "Corona discharge processes," IEEE Transactions on Plasma Science, vol. 19, no. 6, pp. 1152-1166, 1991.
    [11] R. H. Fowler and L. Nordheim, "Electron emission in intense electric fields," Proc. R. Soc. Lond. A, vol. 119, no. 781, pp. 173-181, 1928.
    [12] J. He, P. Cutler, and N. Miskovsky, "Generalization of Fowler–Nordheim field emission theory for nonplanar metal emitters," Applied Physics Letters, vol. 59, no. 13, pp. 1644-1646, 1991.
    [13] K. Jensen and E. Zaidman, "Field emission from an elliptical boss: Exact versus approximate treatments," Applied Physics Letters, vol. 63, no. 5, pp. 702-704, 1993.
    [14] K. Jensen and E. Zaidman, "Field emission from an elliptical boss: Exact and approximate forms for area factors and currents," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 12, no. 2, pp. 776-780, 1994.
    [15] K. Jensen and E. Zaidman, "Analytic expressions for emission characteristics as a function of experimental parameters in sharp field emitter devices," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, vol. 13, no. 2, pp. 511-515, 1995.
    [16] R. Ławrowski, C. Langer, C. Prommesberger, F. Dams, M. Bachmann, and R. Schreiner, "Fabrication and simulation of silicon structures with high aspect ratio for field emission devices," in Vacuum Nanoelectronics Conference (IVNC), 2014 27th International, 2014, pp. 193-194: IEEE.
    [17] D. Roveri, G. Sant’Anna, H. Bertan, J. Mologni, M. Alves, and E. Braga, "Simulation of the enhancement factor from an individual 3D hemisphere-on-post field emitter by using finite elements method," Ultramicroscopy, vol. 160, pp. 247-251, 2016.
    [18] L. Nilsson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller, L. Schlapbach, H. Kind, J. Bonard, and K. Kern, "Scanning field emission from patterned carbon nanotube films," Applied Physics Letters, vol. 76, no. 15, pp. 2071-2073, 2000.
    [19] X. Wang, M. Wang, H. Ge, Q. Chen, and Y. Xu, "Modeling and simulation for the field emission of carbon nanotubes array," Physica E: Low-dimensional Systems and Nanostructures, vol. 30, no. 1-2, pp. 101-106, 2005.
    [20] R. Smith and S. Silva, "Maximizing the electron field emission performance of carbon nanotube arrays," Applied Physics Letters, vol. 94, no. 13, p. 133104, 2009.
    [21] Y. D. Lim, Q. Kong, S. Wang, C. W. Tan, B. K. Tay, and S. Aditya, "Enhanced field emission properties of carbon nanotube films using densification technique," Applied Surface Science, vol. 477, pp. 211-219, 2017.
    [22] S. K. Lee, J. H. Kim, M. G. Jeong, M. J. Song, and D. S. Lim, "Direct deposition of patterned nanocrystalline CVD diamond using an electrostatic self-assembly method with nanodiamond particles," Nanotechnology, vol. 21, no. 50, p. 505302, 2010.
    [23] M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, "Diamond synthesis from gas phase in microwave plasma," Journal of Crystal Growth, vol. 62, no. 3, pp. 642-644, 1983.
    [24] A. Sawabe and T. Inuzuka, "Growth of diamond thin films by electron-assisted chemical vapour deposition and their characterization," Thin Solid Films, vol. 137, no. 1, pp. 89-99, 1986.
    [25] J. Wei, H. Kawarada, J. i. Suzuki, and A. Hiraki, "Growth of diamond films at low pressure using magneto-microwave plasma CVD," Journal of Crystal Growth, vol. 99, no. 1-4, pp. 1201-1205, 1990.
    [26] K. Suzuki, A. Sawabe, and T. Inuzuka, "Growth of diamond thin films by DC plasma chemical vapor deposition and characteristics of the plasma," Japanese Journal of Applied Physics, vol. 29, no. 1R, pp. 153-157, 1990.
    [27] S. Matsumoto, "Chemical vapour deposition of diamond in RF glow discharge," Journal of Materials Science Letters, vol. 4, no. 5, pp. 600-602, 1985.
    [28] K. Okano, K. Hoshina, M. Iida, S. Koizumi, and T. Inuzuka, "Fabrication of a diamond field emitter array," Applied Physics Letters, vol. 64, no. 20, pp. 2742-2744, 1994.
    [29] A. Krauss, O. Auciello, M. Ding, D. Gruen, Y. Huang, V. Zhirnov, E. Givargizov, A. Breskin, R. Chechen, and E. Shefer, "Electron field emission for ultrananocrystalline diamond films," Journal of Applied Physics, vol. 89, no. 5, pp. 2958-2967, 2001.
    [30] T. H. Chang, K. Panda, B. Panigrahi, S. C. Lou, C. Chen, H. C. Chan, I. N. Lin, and N. H. Tai, "Electrophoresis of nanodiamond on the growth of ultrananocrystalline diamond films on silicon nanowires and the enhancement of the electron field emission properties," The Journal of Physical Chemistry C, vol. 116, no. 37, pp. 19867-19876, 2012.
    [31] K. Sankaran, N. Tai, and I. Lin, "Flexible electron field emitters fabricated using conducting ultrananocrystalline diamond pyramidal microtips on polynorbornene films," Applied Physics Letters, vol. 104, no. 3, p. 031601, 2014.
    [32] S. Iijima, "Helical microtubules of graphitic carbon," Nature, vol. 354, no. 6348, pp. 56-58, 1991.
    [33] A. K. Geim and K. S. Novoselov, "The rise of graphene," in Nanoscience and Technology: A Collection of Reviews from Nature Journals: World Scientific, 2010, pp. 11-19.
    [34] S. Khorrami and R. Lotfi, "Influence of carrier gas flow rate on carbon nanotubes growth by TCVD with Cu catalyst," Journal of Saudi Chemical Society, vol. 20, no. 4, pp. 432-436, 2016.
    [35] M. Meyyappan, L. Delzeit, A. Cassell, and D. Hash, "Carbon nanotube growth by PECVD: a review," Plasma Sources Science and Technology, vol. 12, no. 2, pp. 205-216, 2003.
    [36] W. A. De Heer, A. Chatelain, and D. Ugarte, "A carbon nanotube field-emission electron source," Science, vol. 270, no. 5239, pp. 1179-1180, 1995.
    [37] H. Murakami, M. Hirakawa, C. Tanaka, and H. Yamakawa, "Field emission from well-aligned, patterned, carbon nanotube emitters," Applied Physics Letters, vol. 76, no. 13, pp. 1776-1778, 2000.
    [38] D. H. Shin, S. I. Jung, K. N. Yun, G. Chen, Y.-H. Song, Y. Saito, W. I. Milne, and C. J. Lee, "Field emission properties from flexible field emitters using carbon nanotube film," Applied Physics Letters, vol. 105, no. 3, p. 033110, 2014.
    [39] N. Zhao, J. Chen, K. Qu, Q. Khan, W. Lei, and X. Zhang, "Stable electron field emission from carbon nanotubes emitter transferred on graphene films," Physica E: Low-dimensional Systems and Nanostructures, vol. 72, pp. 84-88, 2015.
    [40] L. Yang, Q. Yang, C. Zhang, and Y. Li, "Vertically aligned carbon nanotubes/diamond double-layered structure for improved field electron emission stability," Thin Solid Films, vol. 549, pp. 42-45, 2013.
    [41] P. H. Tsai and H. Y. Tsai, "Fabrication and field emission characteristic of microcrystalline diamond/carbon nanotube double-layered pyramid arrays," Thin Solid Films, vol. 584, pp. 330-335, 2015.
    [42] Y. Y. Chen, "Study on the field emission enhanced handheld atmospheric pressure plasma jet based on nano-carbon materials by MPCVD," Masters Dissertation, National Tsing Hua University, 2017.
    [43] O. Williams, "Nanocrystalline diamond," Diamond and Related Materials, vol. 20, no. 5-6, pp. 621-640, 2011.
    [44] Y. Show, V. M. Swope, and G. M. Swain, "The effect of the CH4 level on the morphology, microstructure, phase purity and electrochemical properties of carbon films deposited by microwave-assisted CVD from Ar-rich source gas mixtures," Diamond and Related Materials, vol. 18, no. 12, pp. 1426-1434, 2009.
    [45] N. Koenigsfeld, R. Kalish, A. Cimmino, D. Hoxley, S. Prawer, and I. Yamada, "Effect of surface roughness on field emission from chemical vapor deposited polycrystalline diamond," Applied Physics Letters, vol. 79, no. 9, pp. 1288-1290, 2001.
    [46] W. Kalss, R. Haubner, G. Lippold, and B. Lux, "Diamond deposition on platinum and palladium—Raman investigations," Diamond and Related Materials, vol. 7, no. 2-5, pp. 158-164, 1998.
    [47] A. R. Badzian, T. Badzian, R. Roy, R. Messier, and K. Spear, "Crystallization of diamond crystals and films by microwave assisted CVD (Part II)," Materials Research Bulletin, vol. 23, no. 4, pp. 531-548, 1988.
    [48] P. Joseph, N.-H. Tai, Y.-C. Chen, H.-F. Cheng, and I.-N. Lin, "Transparent ultrananocrystalline diamond films on quartz substrate," Diamond and Related Materials, vol. 17, no. 4-5, pp. 476-480, 2008.
    [49] A. Ferrari and J. Robertson, "Origin of the 1150 cm−1 Raman mode in nanocrystalline diamond," Physical Review B, vol. 63, no. 12, p. 121405, 2001.
    [50] O. A. Shenderova and D. M. Gruen, Ultrananocrystalline diamond: synthesis, properties and applications. William Andrew, 2012.

    QR CODE