簡易檢索 / 詳目顯示

研究生: 李宥霖
Lee, Yu-Lin
論文名稱: 多壁奈米碳管與石墨烯微片之碳纖維補強複合材料機械性質與疲勞特性之探討
Study on Mechanical Properties and Fatigue Behavior of Multi-Wall Carbon Nanotubes and Graphene Nanoplates of Fiber Reinforced Composites Materials.
指導教授: 葉銘泉
Yip, Ming-Chuen
口試委員: 葉維磬
蔡宏營
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 136
中文關鍵詞: 多壁奈米碳管石墨烯微片機械性質動態扭轉疲勞複合材料環氧樹脂
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究擬用機械處理方式來探討奈米碳管與石墨烯微片於環氧樹脂基材中的組合結構,並改善於環氧樹脂中的分散性,同時補強基材與碳纖維的介面強度。本研究以固定奈米補強材在環氧樹脂中含有的重量百分比,然後在相同重量百分比(1 wt%)下改變奈米碳管與石墨烯的比例(10:0、9:1、7:3、5:5、3:7、1:9、0:10)來探討。再將奈米碳管與石墨烯微片混入環氧樹脂中熱壓成型,並探討此複合材料在含奈米碳管與石墨烯不同比例情況下的材料特性,前期研究使用彎曲測試、靜態拉伸測試與衝擊測試來了解複合材料在奈米碳管與石墨烯的組合比例改變是否有所影響,而綜合三種測試結果可以了解到在多壁奈米碳管與石墨烯微片組合比例為5:5情況下為最佳。
    在本論文研究的核心部分碳纖維積層板複合材料,將多壁奈米碳管與石墨烯微片含量比例以5:5來進行添加,並且分別添加量為Neat 、0.5、1.0及1.5 wt%,之後再利用含浸碳纖維疊層方式完成積層板複合材料,並利用靜態機械測試如拉伸測試、彎曲強度、層間剪切強度的影響並做比較。接著以動態扭轉疲勞,來探討複合材料在不同應變等級下的破壞機制。而當本研究添加1.5wt%碳纖維複合材料在機械性質的表現為最佳,其中1.5wt%碳纖維複合材料在彎曲強度部分相較於CF/Epoxy複合材料提升11.5%;在層間剪應力強度更提升17.3%;衝擊強度上升12.87%;靜態拉伸強度明顯提升7.93%。
    本研究進一步探討在不同溫濕老化環境下,對碳纖維複合材料的彎曲強度與層間剪應力強度的影響,而所做的環境老化分別為常溫常濕(25℃/60%RH)、常溫高濕(25℃/85%RH)、高溫常濕(85℃/60%RH)及高溫高濕(85℃/85%RH)。從實驗結果了高濕的環境下對複合材料的機械性質影響最嚴重,高溫條件情況下反而能增強複合材料中基材的高分子鍊鍵結更完全。
    動態扭轉疲勞測試中,本研究所添加的多壁奈米碳管與石墨烯微片更能有效抑止扭轉疲勞中脫層破壞的產生。而其中添加1.5wt%多壁奈米碳管與石墨烯微片在動態扭轉疲勞壽命有大幅提升,在低扭轉應變情況下相較於未添加的碳纖維複合材料的扭轉疲勞壽命提升5.15倍。此提升量相較於靜態機械測試結果差異非常大,因而可證明本論文所添加的奈米補強材在動態疲勞測試扮演極重要的角色,能夠完全地改變複合材料在動態疲勞測試的性質。
    最後以掃描式電子顯微鏡觀察破壞斷面,藉此了解複合材料微觀破壞情況、內部奈米碳管與石墨烯微片分散情形及證實其兩者奈米補強材能夠組成三維立體結構,而抑止石墨烯微片團聚現象產生,由測試觀察多壁奈米碳管與石墨烯微片在複合材料中傳遞應力的表現情形,藉此了解兩奈米補強材交聯的情形。


    目錄 第一章 前言 第二章 研究動機 第三章 文獻回顧 3-1環氧樹脂概論 3-2碳纖維概論 3-3碳纖維/環氧樹脂複合材料介紹 3-4複合材料之疲勞性質 3-5奈米碳管補強奈米複合材料之機械性質與物理性質探討 3-5.1改質奈米碳管對奈米複合材料機械性質與物理性質之影響 3-5.2改質奈米碳管與環氧樹脂交聯性之奈米複合材料影響 3-6石墨烯補強奈米複合材料之機械性質與物理性質探討 3-6.1石墨烯補強奈米複合材料之機械性質與物理性質探討 3-7石墨烯與奈米碳管補強之奈米複合材料探討 第四章 實驗內容與流程 4-1實驗材料與試劑 4-2實驗儀器及設備 4-2.1製程設備 4-2.2測試儀器 4-3多壁奈米碳管/石墨烯微片/環氧樹脂奈米複合材料製備 4-4多壁奈米碳管/石墨烯微片/環氧樹脂/碳纖維積層板奈米複合材料製備 4-5實驗流程及其測試條件 4-5.1實驗流程 4-5.2實驗測試條件 4-5.3實驗測試方法 第五章 結果與討論 5-1靜態機械性質分析 5-1-1多壁奈米碳管/石墨烯微片/環氧樹脂之彎曲強度測試分析 5-1-2多壁奈米碳管/石墨烯微片/環氧樹脂之靜態拉伸強度測試分析 5-1-3多壁奈米碳管/石墨烯微片/環氧樹脂之衝擊強度測試分析 5-1-4多壁奈米碳管/石墨烯微片/環氧樹脂之前期研究結果探討 5-2多壁奈米碳管/石墨烯微片/碳纖維/環氧樹脂積層板之研究結果探討 5-2-1 多壁奈米碳管/石墨烯微片/碳纖維/環氧樹脂積層板之靜態彎曲強度測試 5-2-2 多壁奈米碳管/石墨烯微片/碳纖維/環氧樹脂積層板之層間剪應力強度測試 5-2-3 多壁奈米碳管/石墨烯微片/碳纖維/環氧樹脂積層板之衝擊強度測試 50 5-2-4 多壁奈米碳管/石墨烯微片/碳纖維/環氧樹脂積層板之靜態拉伸強度測試 5-3 多壁奈米碳管/石墨烯微片/碳纖維/環氧樹脂積層板之環境老化預處理研究結果探討 5-3-1 多壁奈米碳管/石墨烯微片/碳纖維/環氧樹脂積層板環境老化預處理之彎曲強度探討 5-3-1.1 25℃、85%RH環境老化預處理之彎曲強度 5-3-1.2 85℃環境老化預處理之彎曲強度 5-3-1.3 85℃、85%RH環境老化預處理之彎曲強度 5-3-1.4 環境老化預處理之複合材料彎曲強度比較 5-3-2 多壁奈米碳管/石墨烯微片/碳纖維/環氧樹脂積層板環境老化預處理之層間剪應力強度探討 5-3-2.1 25℃、85%RH環境老化預處理之層間剪應力強度 5-3-2.2 85℃環境老化預處理之層間剪應力強度 5-3-2.3 85℃、85%RH環境老化預處理之層間剪應力強度 5-3-2.4 環境老化預處理之複合材料層間剪應力強度比較 5-4動態機械性質分析 5-4-1 常溫下扭轉疲勞測試分析 5-4-1.1常溫下CF/ Epoxy積層板扭轉疲勞測試分析 5-4-1.2常溫下0.5 wt% MWCNTs/GNPs / CF / Epoxy積層板扭轉疲勞測試分析 5-4-1.3常溫下1.0 wt% MWCNTs/GNPs / CF / Epoxy積層板扭轉疲勞測試析 5-4-1.4常溫下1.5 wt% MWCNTs /GNPs / CF / Epoxy積層板扭轉疲勞測試分析 5-4-1.5扭轉疲勞測試之結果分析比較 第六章 結論與未來工作 6-1結論 6-2未來工作 參考文獻 附表 附圖

    1. http://www.epoxy-c.com/epoxyresin/2004016.htm
    2. “環氧樹脂”,http://zh.wikipedia.org/wiki/, (2011)
    3. “碳纖維”,http://zh.wikipedia.org/wiki/, (2011)
    4. 許明發,柯澤豪,劉顯光和郭文雄,“複合材料入門,”中華民國尖端材料科技協會,2005年
    5. K. Liu, Y. Sun, R. Zhou, H. Zhu, J. Wang, L. Liu, S. Fan and K. Jiang, “Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method,” Nanotechnology, vol. 21, (2010)
    6. http://www.iosh.gov.tw/userfiles/File/workshop/data/w931021_1.pdf
    7. Ramesh Talreja, “Fatigue of composite materials,” Technomic Publishing co, INC, (1987)
    8. B. Harris, H. Reiter, T. Adam, R.F. Dickson and G. Fernando, “Fatigue behaviour of carbon fibre reinforced plastics,” COMPOSITES, vol. 21, (1990)
    9. J. M. Whitney, “Fatigue Characterization of Composite Materials,” Fatigue of Fibrous Composite Materials, ASTM STP 723, American Society for Testing and Materials, (1981), pp.133-151.
    10. H. T. Hahn and R.Y. Kim, “Fatigue Behavior of Composite Laminate,” Journal of Composite Materials, vol. 10, (1976), pp.156-180.
    11. W. Hwang and K. S. Han, “Fatigue of Composites Fatigue Modulus Concept and Life Prediction,” Journal of Composite Materials, vol. 20, (1986), pp.154–165.
    12. A. Boisseau, P. Davies and F. Thiebaud, “Fatigue Behaviour of Glass Fibre Reinforced Composites for Ocean Energy Conversion Systems,” Applied Composite Materials, (2012)
    13. D. C. Davis, J. W. Wilkerson, J. Zhu and V. G. Hadjiev, “A strategy for improving mechanical properties of a fiber reinforced epoxy composite using functionalized carbon nanotubes,” Composites Science and Technology, vol. 71, (2011), pp.1089–1097
    14. T. Ogasawara, S. Y. Moon, Y. Inoue and Y. Shimamura, “Mechanical properties of aligned multi-walled carbon nanotube/epoxy composites processed using a hot-melt prepreg method,” Composites Science and Technology, (2011)
    15. Y. Ye, H. Chen, J. Wua and C. M. Chan, “Evaluation on the thermal and mechanical properties of HNT-toughened epoxy/carbon fibre composites,” Composites: Part B, vol. 42, (2011), pp. 2145–2150
    16. Y. Ye, H. Chen, J. Wu and C. M. Chan, “Interlaminar properties of carbon fiber composites with halloysite nanotube-toughened epoxy matrix,” Composites Science and Technology, vol. 71, (2011), pp. 717–723
    17. A. Xu, H. Nozaki, L. Bao and K. Kemmochi, “Determination of Creep Life of Glass Fiber/Phenol Composite Filled with Carbon Nanotubes by Four-Point Flexural Creep Test ," Japanese Journal of Applied Physics, vol. 51, (2012)
    18. S. Rana, R. Alagirusamy, R. Fangueiro and M. Joshi, “Effect of Carbon Nanofiber Functionalization on the In-Plane Mechanical Properties of Carbon/Epoxy Multiscale Composites,” Journal of Applied Polymer Science, (2012)
    19. R. Hollertz, S. Chatterjee, H. Gutmann, T. Geiger, F. A. Nuesch and B. T. T. Chu, “Improvement of toughness and electrical properties of epoxy composites with carbon nanotubes prepared by industrially relevant processes,” Nanotechnology, vol. 22, (2011)
    20. J. H. Lee, K. Y. Rhee and S. J. Park, “Silane Modification of carbon nanotubes and its effects on the material properties of carbon/CNT/epoxy three-phase composites,” Composites: Part A, vol. 42, (2011), pp.478–483
    21. M.T. Kim, K.Y. Rhee, J.H. Lee, D. Hui and K.T. Lau, “Property enhancement of a carbon fiber/epoxy composite by using carbon Nanotubes,” Composites: Part B, vol. 42, (2011), pp.1257–1261
    22. Y. Geng, M. Y. Liu, J. Li, X. M. Shi and J. K. Kim, “Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites,” Composites: Part A, vol. 39, (2008), pp.1876–1883
    23. 王國書,“奈米碳管/高分子預浸材積層板複合材料之機械與電性質研究,” 國立清華大學動力機械工程學系碩士論文, (2007).
    24. A. Xu, H. Nozaki, L. Bao and K. Kemmochi, “Determination of Creep Life of Glass Fiber/Phenol Composite Filled with Carbon Nanotubes by Four-Point Flexural Creep Test ," Japanese Journal of Applied Physics, vol. 51, (2012)
    25. S.G. Prolongo, M.R. Gude and A. Urena, “Improving the flexural and thermomechanical properties of amino-functionalized carbon nanotube/epoxy composites by using a pre-curing treatment,” Composites Science and Technology, vol. 71, (2011), pp.765–771
    26. B. Ashrafi, J. Guan, V. Mirjalili, Y. Zhang, L. Chun, P. Hubert, B. Simard, C. T. Kingston, O. Bourne and A. Johnston, “Enhancement of mechanical performance of epoxy/carbon fiber laminate composites using single-walled carbon nanotubes,” Composites Science and Technology, vol. 71, (2011), pp.1569–1578
    27. V. Singh, D. Joung, L. Zhai, S. Das, S. I. Khondaker and S. Seal, “Graphene based materials: Past, present and future,”Progress in Materials Science, vol. 56, (2011), pp.1178–1271
    28. A. K. Geim and K. S. Novoselov, “The rise of graphene,” nature materials, vol. 6, (2007), pp.183–191
    29. T. S. Lo, W. S. Kuo and C. C. Cheng, “Material Characterization of Graphite Nanosheet Composites,” POLYMER COMPOSITES, (2011), pp.305–313
    30. F. Yavari, M. A. Rafiee, J. Rafiee, Z. Z. Yu and N. Koratkar, “Dramatic Increase in Fatigue Life in Hierarchical Graphene Composites,” American Chemical Society, vol. 2, (2010), pp.2738–2743
    31. M. C. Hsiao, S. H. Liao, C. C. M. Ma, N. W. Pu, C. A. Wang, Y. Sung, M. D. Ger, C. C. Teng, S. H. Lee, M. Y. Yen and M. H. Hsiao, “Preparation and properties of a graphene reinforced nanocomposite conducting plate,” Journal of Materials Chemistry, vol. 20, (2010), pp. 8496–8505
    32. M. A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z. Z. Yu and N. Koratkar, “Fracture and Fatigue in Graphene Nanocomposites,” Small, vol. 6, (2010), pp.179–183
    33. M. A. Rafiee, W. Lu, A. V. Thomas, A. Zandiatashbar, J. Rafiee, J. M. Tour and N. A. Koratkar, “Graphene Nanoribbon Composites,” American Chemical Society, vol. 4, (2010), pp.7415–7420
    34. D. R. Bortz, E. G. Heras and I. M. Gullon, “Impressive Fatigue Life and Fracture Toughness Improvements in Graphene Oxide/Epoxy Composites,” American Chemical Society, vol. 45, (2012), pp. 238–245
    35. S. Y. Yang, W. N. Lin, Y. L. Huang, H. W. Tien, J. Y. Wang, C. C. M. Ma , S. M. Li and Y. S. Wang, “Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites,” CARBON, vol. 49, ( 2011 ), pp. 793–803
    36. “Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials,” ASTM D3039/D3039M–08, (2007)
    37. “Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials,” ASTM D790-10, (2010).
    38. “Standard Test Method for Short-Beam Strength of Polymer Matrix Composite Materials and Their Laminates,” ASTM D2344/D2344M-00, (2006).
    39. “ Standard Test Method for Determining the Pendulum Impact Resistance of Notched Specimens of Plastics, ASTM D256, (1996), pp. 1-18
    40. “Standard Test Method for Tension-Tension Fatigue of Polymer Matrix Composite Materials,” ASTM D3479/D3479M-06, (2007).
    41. “Standard Practice for Statistical Analysis of Linear or Linearized Stress-Life (S-N) and Strain-Life (ε-N) Fatigue Data,” ASTM E739-91, (2004).
    42. “Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis,” ASTM E831 – 06, (2006)
    43. “Standard Test Methods for Thermal Transmission Properties of Thin Thermally Conductive Solid Electrical Insulation Materials,” ASTM D-5470, (2006)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE