研究生: |
程紹奇 Cheng, Shao-Chi |
---|---|
論文名稱: |
含偶氮苯超分子晶體之光熱誘導機械運動 Stimuli-induced Mechanical Motions of Azobenzene Containing Pseudorotaxane Crystals |
指導教授: |
堀江正樹
Masaki, Horie |
口試委員: |
蘇安仲
Su, An-Chung 游進陽 Yu, Chin-Yang 周鶴修 Chou, Ho-Hsiu 劉振良 Liu, Cheng-Liang |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 237 |
中文關鍵詞: | 超分子 、晶體 、偶氮苯 、光熱誘導 |
外文關鍵詞: | pseudorotaxane, crystal, azobenzene, photo-responsive |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討含偶氮苯超分子晶體之光熱致異構化機械性質及動力學
第二章描述超分子晶體的合成與透過單晶繞射探討它們的分子排列。其中,環上具有溴分子取代基或是偶氮苯末端接上甲基之超分子擁有特殊的彎曲反式偶氮苯結構。以外,此類超分子晶體的異構化性質依據分子間/內的作用力來決定,例如晶體1與2在偶氮苯上有很強的分子間作用力,此一特性將導致異構化的困難性;對於偶氮苯末端取代基稍長的晶體3和4,雖然擁有和1一樣的晶體系統,卻失去原本偶氮苯之間的分子作用力,取而代之的是軸環本身的分子內作用力。因此,此一超分子晶體將具備更多異構化的彈性空間;然而在偶氮苯末端擁有很長乙基的晶體5則是因為分子的立體障礙導致分子之間沒有存在任何作用力,卻也提供很大的異構化特性。
在第三章我們對於晶體1-8做了一系列紫外/可見光的照射實驗。重複且交替的紫外/可見光照射導致晶體不同方向的彎曲,且沒有明顯的衰退。在可見光的照射下,晶體可以在0.3秒內完成彎曲的行為,比其他含偶氮苯化合物的相關文獻還快速。此外,偶氮苯的順反轉化率也由UV-vis和1H NMR光譜來判斷。
第四章闡述含二茂鐵超分子晶體在照射聚焦445奈米雷射光後產生的光致機械能效應。當使用強度低(4 mW)的445奈米雷射,晶體3和4產生蜷曲的機械行為。如果提高雷射強度到12 mW,更明顯的機械性質如翻轉、跳躍甚至輸送行為可以被觀察到。此章節亦探討光致機械能所產生的力,晶體6可以承受極高的雷射強度並提供將近9600倍自己晶體本身的重量值。這些超分子的異構化動力學可藉由一級反應速率公式推導出速率常數k以及異構化活化能Ea,相較於軸分子1,超分子1擁有更快的恢復率以及較低的活化能。
第五章提及此類含偶氮苯超分子晶體的總結論和未來展望,相關的實驗細節收錄在第六章。
This study investigates the dynamic thermally and photoinduced mechanical motions and kinetics of photoisomerization of azobenzene containing pseudorotaxane crystals.
In Chapter 2, the synthesis and characterization of new pseudorotaxane crystals and their molecular packing structures observed in single-crystal X-ray crystallography are described. X-ray crystallography shows pseudorotaxanes with a methylazobenzene group and a dibromophenylene ring in the cyclic component to exhibit unique twisting of the trans-azobenzene groups at torsion angles. In addition, the isomerization mobility of crystals was predicted based on their intra- and intermolecular interaction. single crystals of 1 and 2 have strong π-π stacking interaction between aromatic ring A-B’ and A’-B, which potentially increase difficulty in trans-to-cis isomerization of azobenzene groups. With the slight elongation in axle molecule of single crystals of 3 and 4, the crystal system remains the same as 1 yet there is only intramolecular π-π interaction between aromatic ring B-C. In this case, azobenzene groups are relatively flexible without any interaction. However, a single crystal of 5 having long axle length changes the molecular alignment as well as crystal system to monoclinic. There is no molecular interaction existing in 5, which may provide high mobility for cis-trans isomerization of azobenzene groups.
In Chapter 3, the reversible laser-induced bending motions of pseudorotaxane crystals 1-8 using 360 nm/445 nm lasers are described. Repeated alternating laser irradiation of the crystals at 360 and 445 nm produces bending in opposite directions, with no evidence of decay. Under 445-nm irradiation, bending takes place within 0.3 seconds, which is much faster than that reported in the literature for organic azobenzene derivative crystals. Since the changes observed in the crystal shape are related to isomerization of the azobenzene groups under laser irradiation, the rate of photoisomerization conversion of the azobenzene groups are evaluated by UV-vis absorption spectra and 1H NMR spectra, separately.
In Chapter 4, mechanical switching of crystals of ferrocene-containing pseudorotaxanes controlled by focused 445 nm laser light are investigated. Slim photomechanical motions such as thermal expansion and curling are observed in crystals of 3 and 4 under low power intensity (4 mW). When irradiated to the same crystals using 445 nm at 12 mW, obvious photosalient effect like flipping, jumping and transporting can be achieved. For 6 with larger ring molecule, the crystal eventually exhibits jumping motions at extremely high power intensity (43 mW). The forces produced by photo-induced molecular motions were also measured under variables of condition. Under same but weak laser intensity of 445 nm, a single crystal of 3 produced the most force compared to 1 and 6. However, 6 can endure under extremely high laser intensity (ca. 43 mW), which provide the most force among three crystals (ca. 9600 times crystal itself). On the other hand, kinetics of these [2]pseudorotaxanes are also discussed. Rate constant (k) and activation energy (Ea) can be derived from plot assuming first-order reaction for isomerization of azobenzene groups. Pseudorotaxane 1 showed the fastest recovery rate and lower Ea compared with 1-Axle. On the other hand, Tol-1 without ferrocenyl group has lower Ea yet slower recovery rate than 1.
In Chapter 5, summary and future prospective regarding of these azobenzene containing pseudorotaxane crystals series is described.
In Chapter 6, the experimental procedures and analysis data, such as 1H NMR, 13C NMR, elemental analysis, FD and ESI mass spectra are summarized.
1. Desiraju G. R., Nature, 2001, 412, 397-400.
2. Reinhoudt D. and Crego-Calama M., Science, 2002, 295, 2403-2407.
3. Wei P., Yan X. and Huang F., Chem. Soc. Rev., 2015, 44, 815-832.
4. So S. M., Moozeh K., Lough A. J. and Chin J., Angew. Chem. Int. Ed., 2014, 53, 829-832.
5. Kumar D. K. and Steed J. W., Chem. Soc. Rev., 2014, 43, 2080-2088.
6. Yeung M. C.-L. and Yam V. W.-W., Chem. Soc. Rev., 2015, 44, 4192-4202.
7. Yang H., Yuan B., Zhang X. and Scherman O. A., Acc. Chem. Res., 2014, 47, 2106-2115.
8. Peng L., You M., Wu C., Han D., Öçsoy I., Chen T., Chen Z. and Tan W., ACS nano, 2014, 8, 2555-2561.
9. Li C., Chem. Commun., 2014, 50, 12420-12433.
10. Dong S., Zheng B., Wang F. and Huang F., Acc. Chem. Res., 2014, 47, 1982-1994.
11. Yu G., Jie K. and Huang F., Chem. Rev., 2015, 115, 7240-7303.
12. Stoddart J. F., Angew. Chem. Int. Ed., 2014, 53, 11102-11104.
13. Barat R., Legigan T., Tranoy-Opalinski I., Renoux B., Péraudeau E., Clarhaut J., Poinot P., Fernandes A. E., Aucagne V. and Leigh D. A., Chem. Sci., 2015, 6, 2608-2613.
14. van Dongen S. F., Cantekin S., Elemans J. A., Rowan A. E. and Nolte R. J., Chem. Soc. Rev., 2014, 43, 99-122.
15. Borré E., Stumbé J.-F., Bellemin-Laponnaz S. and Mauro M., Chem. Commun., 2017, 53, 8344-8347.
16. Jones C. D. and Steed J. W., Chem. Soc. Rev., 2016, 45, 6546-6596.
17. McGuirk C. M., Stern C. L. and Mirkin C. A., J. Am. Chem. Soc., 2014, 136, 4689-4696.
18. Zhang Z., Kim D. S., Lin C.-Y., Zhang H., Lammer A. D., Lynch V. M., Popov I., Miljanić O. S., Anslyn E. V. and Sessler J. L., J. Am. Chem. Soc., 2015, 137, 7769-7774.
19. Monti S. and Manet I., Chem. Soc. Rev., 2014, 43, 4051-4067.
20. Chen Q., Sun J., Li P., Hod I., Moghadam P. Z., Kean Z. S., Snurr R. Q., Hupp J. T., Farha O. K. and Stoddart J. F., J. Am. Chem. Soc., 2016, 138, 14242-14245.
21. Stoddart J. F., Angew. Chem. Int. Ed., 2017, 56, 11094-11125.
22. Badjić J. D., Balzani V., Credi A., Silvi S. and Stoddart J. F., Science, 2004, 303, 1845-1849.
23. Bruns C. J. and Stoddart J. F., Acc. Chem. Res., 2014, 47, 2186-2199.
24. Schliwa M. and Woehlke G., Nature, 2001, 411, 424.
25. Albrecht-Gary A. M., Saad Z., Dietrich-Buchecker C. O. and Sauvage J. P., J. Am. Chem. Soc., 1985, 107, 3205-3209.
26. Lahlali H., Jobe K., Watkinson M. and Goldup S. M., Angew. Chem., 2011, 123, 4237-4241.
27. Kay E. R., Leigh D. A. and Zerbetto F., Angew. Chem. Int. Ed., 2007, 46, 72-191.
28. Champin B., Mobian P. and Sauvage J.-P., Chem. Soc. Rev., 2007, 36, 358-366.
29. Bottari G., Leigh D. A. and Pérez E. M., J. Am. Chem. Soc., 2003, 125, 13360-13361.
30. Hubin T. J. and Busch D. H., Coord. Chem. Rev., 2000, 200, 5-52.
31. Klajn R., Stoddart J. F. and Grzybowski B. A., Chem. Soc. Rev., 2010, 39, 2203-2237.
32. Anelli P. L., Spencer N. and Stoddart J. F., J. Am. Chem. Soc., 1991, 113, 5131-5133.
33. Bissell R. A., Córdova E., Kaifer A. E. and Stoddart J. F., Nature, 1994, 369, 133.
34. Kay E. R. and Leigh D. A., Angew. Chem. Int. Ed., 2015, 54, 10080-10088.
35. Collier C. P., Mattersteig G., Wong E. W., Luo Y., Beverly K., Sampaio J., Raymo F. M., Stoddart J. F. and Heath J. R., Science, 2000, 289, 1172-1175.
36. Oohora K., Onuma Y., Tanaka Y., Onoda A. and Hayashi T., Chem. Commun., 2017, 53, 6879-6882.
37. Greb L. and Lehn J.-M., J. Am. Chem. Soc., 2014, 136, 13114-13117.
38. Wang Y., Tan X., Zhang Y.-M., Zhu S., Zhang I., Yu B., Wang K., Yang B., Li M. and Zou B., J. Am. Chem. Soc., 2015, 137, 931-939.
39. Hartley G. S., Nature, 1937, 140, 281.
40. Kumar G. S. and Neckers D., Chem. Rev., 1989, 89, 1915-1925.
41. Casellas J., Bearpark M. J. and Reguero M., Chemphyschem, 2016, 17, 3068-3079.
42. Hosono N., Yoshikawa M., Furukawa H., Totani K., Yamada K., Watanabe T. and Horie K., Macromolecules, 2013, 46, 1017-1026.
43. Lee S., Oh S., Lee J., Malpani Y., Jung Y. S., Kang B., Lee J. Y., Ozasa K., Isoshima T., Lee S. Y., Hara M., Hashizume D. and Kim J. M., Langmuir, 2013, 29, 5869-5877.
44. Kusano D., Ohshima R., Hosono N., Totani K. and Watanabe T., Polymer, 2014, 55, 5648-5655.
45. Baroncini M., d'Agostino S., Bergamini G., Ceroni P., Comotti A., Sozzani P., Bassanetti I., Grepioni F., Hernandez T. M., Silvi S., Venturi M. and Credi A., Nat. Chem., 2015, 7, 634-640.
46. Oh S. K., Nakagawa M. and Ichimura K., J. Mater. Chem., 2002, 12, 2262-2269.
47. Kouvatas C., Baille W. E., Ortiz-Palacios J., Aguilar-Ortiz E., Rivera E. and Zhu X. X., J. Phys. Chem. B, 2015, 119, 12318-12324.
48. Khuong T.-A. V., Nuñez J. E., Godinez C. E. and Garcia-Garibay M. A., Acc. Chem. Res., 2006, 39, 413-422.
49. Vukotic V. N., Harris K. J., Zhu K., Schurko R. W. and Loeb S. J., Nat. Chem., 2012, 4, 456-460.
50. Gupta P., Karothu D. P., Ahmed E., Naumov P. and Nath N. K., Angew. Chem., 2018, 130, 8634-8638.
51. Liu Y., Xu B., Sun S., Wei J., Wu L. and Yu Y., Adv. Mater., 2017, 29, 1604792.
52. Taniguchi T., Fujisawa J., Shiro M., Koshima H. and Asahi T., Chem. Eur. J., 2016, 22, 7950-7958.
53. Kind J., Kaltschnee L., Leyendecker M. and Thiele C. M., Chem. Commun., 2016, 52, 12506-12509.
54. Bushuyev O. S., Friščić T. and Barrett C. J., CrystEngComm, 2016, 18, 7204-7211.
55. Guo S., Matsukawa K., Miyata T., Okubo T., Kuroda K. and Shimojima A., J. Am. Chem. Soc., 2015, 137, 15434-15440.
56. Nath N. K., Pejov L., Nichols S. M., Hu C., Saleh N., Kahr B. and Naumov P., J. Am. Chem. Soc., 2014, 136, 2757-2766.
57. Bandara H. D. and Burdette S. C., Chem. Soc. Rev., 2012, 41, 1809-1825.
58. Yamada M., Kondo M., Mamiya J., Yu Y., Kinoshita M., Barrett C. J. and Ikeda T., Angew. Chem. Int. Ed., 2008, 47, 4986-4988.
59. Hagen R. and Bieringer T., Adv. Mater., 2001, 13, 1805-1810.
60. Åstrand P.-O., Ramanujam P., Hvilsted S., Bak K. L. and Sauer S. P., J. Am. Chem. Soc., 2000, 122, 3482-3487.
61. Liu J., Bu W., Pan L. and Shi J., Angew. Chem., 2013, 125, 4471-4475.
62. Willner I. and Rubin S., Angew. Chem. Int. Ed., 1996, 35, 367-385.
63. Yu Y., Nakano M. and Ikeda T., Nature, 2003, 425, 145.
64. Koshima H., Ojima N. and Uchimoto H., J. Am. Chem. Soc., 2009, 131, 6890-6891.
65. Ikeda T. and Ube T., Mater. Today, 2011, 14, 480-487.
66. Bushuyev O. S., Tomberg A., Friscic T. and Barrett C. J., J. Am. Chem. Soc., 2013, 135, 12556-12559.
67. Uchida E., Azumi R. and Norikane Y., Nat. Commun., 2015, 6, 7310.
68. Horie M., Suzaki Y. and Osakada K., J. Am. Chem. Soc., 2004, 126, 3684-3685.
69. Horie M., Suzaki Y. and Osakada K., Inorg. Chem., 2005, 44, 5844-5853.
70. Osakada K., Sakano T., Horie M. and Suzaki Y., Coord. Chem. Rev., 2006, 250, 1012-1022.
71. Horie M., Sassa T., Hashizume D., Suzaki Y., Osakada K. and Wada T., Angew. Chem. Int. Ed., 2007, 46, 4983-4986.
72. Horie M., Suzaki Y., Hashizume D., Abe T., Wu T., Sassa T., Hosokai T. and Osakada K., J. Am. Chem. Soc., 2012, 134, 17932-17944.
73. Tsai Y.-C., Chen K.-J., Su C.-J., Wu W.-R., Jeng U.-S. and Horie M., J. Mater. Chem. C, 2014, 2, 2061-2068.
74. Chen K.-J., Tsai Y. C., Suzaki Y., Osakada K., Miura A. and Horie M., Nat. Commun., 2016, 7, 13321.
75. Chen K.-J., Chen P.-L. and Horie M., Sci. Rep., 2017, 7, 14195.
76. Erbas-Cakmak S., Leigh D. A., McTernan C. T. and Nussbaumer A. L., Chem. Rev., 2015, 115, 10081-10206.
77. Fahrenbach A. C., Bruns C. J., Li H., Trabolsi A., Coskun A. and Stoddart J. F., Acc. Chem. Res., 2013, 47, 482-493.
78. Nikitin K. and Fitzmaurice D., J. Am. Chem. Soc., 2005, 127, 8067-8076.
79. Leigh D. A., Morales M. Á. F., Pérez E. M., Wong J. K., Saiz C. G., Slawin A. M., Carmichael A. J., Haddleton D. M., Brouwer A. M. and Buma W. J., Angew. Chem., 2005, 117, 3122-3127.
80. Weber N., Hamann C., Kern J.-M. and Sauvage J.-P., Inorg. Chem., 2003, 42, 6780-6792.
81. Berna J., Leigh D. A., Lubomska M., Mendoza S. M., Pérez E. M., Rudolf P., Teobaldi G. and Zerbetto F., Nat. Mater., 2005, 4, 704.
82. Juluri B. K., Kumar A. S., Liu Y., Ye T., Yang Y.-W., Flood A. H., Fang L., Stoddart J. F., Weiss P. S. and Huang T. J., Acs Nano, 2009, 3, 291-300.
83. Zhang W., DeIonno E., Dichtel W. R., Fang L., Trabolsi A., Olsen J.-C., Benítez D., Heath J. R. and Stoddart J. F., J. Mater. Chem., 2011, 21, 1487-1495.
84. Zhu K., O'keefe C. A., Vukotic V. N., Schurko R. W. and Loeb S. J., Nat. Chem., 2015, 7, 514-519.
85. Tayi A. S., Kaeser A., Matsumoto M., Aida T. and Stupp S. I., Nat. Chem., 2015, 7, 281.
86. Coskun A., Hmadeh M., Barin G., Gándara F., Li Q., Choi E., Strutt N. L., Cordes D. B., Slawin A. M. and Stoddart J. F., Angew. Chem. Int. Ed., 2012, 51, 2160-2163.
87. Cheng S.-C., Chen K.-J., Suzaki Y., Tsuchido Y., Kuo T.-S., Osakada K. and Horie M., J. Am. Chem. Soc., 2018, 140, 90-93.
88. Tait K. M., Parkinson J. A., Bates S. P., Ebenezer W. J. and Jones A. C., J. Photochem. Photobiol. A, 2003, 154, 179-188.
89. Zhu K., Baggi G. and Loeb S. J., Nat. Chem., 2018, 10, 625-630.
90. Martinez-Cuezva A., Saura-Sanmartin A., Nicolas-Garcia T., Navarro C., Orenes R.-A., Alajarin M. and Berna J., Chem. Sci., 2017, 8, 3775-3780.
91. Erbas-Cakmak S., Fielden S. D., Karaca U., Leigh D. A., McTernan C. T., Tetlow D. J. and Wilson M. R., Science, 2017, 358, 340-343.
92. Watson M. A. and Cockroft S. L., Chem. Soc. Rev., 2016, 45, 6118-6129.
93. Witus L. S., Hartlieb K. J., Wang Y., Prokofjevs A., Frasconi M., Barnes J. C., Dale E. J., Fahrenbach A. C. and Stoddart J. F., Org. Biomol. Chem., 2014, 12, 6089-6093.
94. Steuerman D. W., Tseng H. R., Peters A. J., Flood A. H., Jeppesen J. O., Nielsen K. A., Stoddart J. F. and Heath J. R., Angew. Chem., 2004, 116, 6648-6653.
95. Whang D., Jeon Y.-M., Heo J. and Kim K., J. Am. Chem. Soc., 1996, 118, 11333-11334.
96. Kim T., Al‐Muhanna M. K., Al‐Suwaidan S. D., Al‐Kaysi R. O. and Bardeen C. J., Angew. Chem., 2013, 125, 7027-7031.
97. Terao F., Morimoto M. and Irie M., Angew. Chem. Int. Ed., 2012, 51, 901-904.
98. Kitagawa D. and Kobatake S., J. Phys. Chem. C, 2013, 117, 20887-20892.
99. Kitagawa D., Nishi H. and Kobatake S., Angew. Chem. Int. Ed., 2013, 52, 9320-9322.
100. Iqbal D. and Samiullah M., Materials, 2013, 6, 116-142.
101. Naumov P., Sahoo S. C., Zakharov B. A. and Boldyreva E. V., Angew. Chem., 2013, 125, 10174-10179.
102. Chiu K. Y., Tran T. T. H., Wu C.-G., Chang S.-H., Yang T.-F. and Su Y. O., J. Electroanal. Chem., 2017, 787, 118-124.
103. Shi W., Bai L., Guo J., Wang X., Xue N., Zhou C. and Zhao Y., Sens. Actuators, B, 2016, 223, 671-678.