簡易檢索 / 詳目顯示

研究生: 林庭輝
Lin, Ting-Hui
論文名稱: 極細二氧化錫奈米棒陣列於鋰離子電池及溼度感測器上的應用
Applications of Ultrathin Tin Oxide Nanorod Arrays in Lithium Ion Battery and Humidity Sensor
指導教授: 李紫原
Lee, Chi-Young
口試委員: 裘性天
Chiu, Hsin-Tien
陳金銘
Chen, Jin-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 66
中文關鍵詞: 二氧化錫奈米棒鋰離子電池濕度感測器
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以 SnCl4 做為前驅物,利用簡易的水熱法在銅箔以及氧化鋁基板上合成出寬約 40-50 nm、長約 400-500 nm 的二氧化錫奈米棒陣列,並進一步的發現若在反應水溶液中添加食鹽,可使得到的二氧化錫奈米棒長度及寬度分別縮至 5-15 nm 以及 300-400 nm。
    由於具有良好的一維形貌,本研究接著將合成出的極細二氧化錫棒奈米陣列應用於鋰離子電池的陽極及溼度感測器上。於鋰離子電池的表現結果中,可以發現經過1C (781 mA g-1) 100 cycle 連續充放電後的測試後,其電容量優於其他對照組 (221 mA h g-1),並於5C (3905 mA g-1) 的高充放電速率中依然有穩定高電容量表現(216 mA h g-1)。而在溼度感測器的表現上,此極細奈米棒陣列在相對溼度 30-90 的環境中,其電阻值的對數值對相對濕度擁有相當良好的線性關係(相關係數 R2 = 0.989),並有著相當高的靈敏度,當在此範圍內升高1 %的相對濕度,其電阻值變化可達 13.2 %,表示在此相對濕度範圍中可精準量測到環境中的相對濕度值。這些結果顯示,不論在鋰離子電池或是相對溼度的感測上,極細二氧化錫奈米棒陣列都有著相當優異的成果。


    目錄 摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VIII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 實驗動機 3 第二章 文獻回顧 4 2.1 鋰離子電池介紹 4 2.1.1 鋰離子電池的發展 4 2.1.2 鋰離子電池陰極材料的現況發展 4 2.1.3 鋰離子電池的陽極材料選擇 5 2.1.4 二氧化錫於鋰離子電池的陽極應用 6 2.1.5 二氧化錫與鋰的合金反應機制 6 2.2 氣體感測器介紹 10 2.2.1 吸附理論 10 2.2.2 二氧化錫氣體感測器工作原理 11 2.3 溼度感測器介紹 14 2.3.1 溼度感測器的選擇 14 2.3.2 溼度感測器種類介紹 14 2.3.3 陶瓷型溼度感測器感測機制 16 2.3.4 二氧化錫作為溼度感測器的性質 17 第三章 實驗方法及步驟 22 3.1 實驗流程圖 22 3.2 二氧化錫奈米棒之合成 22 3.2.1 實驗原料 22 3.2.2 基板前處理 23 3.2.3 二氧化錫奈米棒之合成 23 3.2.4 極細二氧化錫奈米棒之合成 24 3.2.5 二氧化錫奈米棒陣列之合成 24 3.3 樣品測試與分析 26 3.3.1 X光繞射分析儀 26 3.3.2 場發射掃描式電子顯微鏡 26 3.3.3 X射線能量散佈分析儀 26 3.3.4 穿透式電子顯微鏡 27 3.4 鋰離子電池製備及特性量測 27 3.4.1 電極之製備 27 3.4.2 樣品重量之測量 28 3.4.3 Coin cell type電池之組裝 28 3.4.4 鋰離子電池特性量測 28 3.5 溼度感測器的製備及量測 30 3.5.1 溼度感測器樣品製備 30 3.5.2 溼度特性量測 30 第四章 結果與討論 32 4.1 表面形貌與結構鑑定 32 4.1.1 二氧化錫奈米棒反應溫度與時間之探討 32 4.1.2 水熱反應添加鹽類之探討 33 4.1.3 二氧化錫奈米棒陣列之分析 34 4.2 應用於鋰離子電池效能測試 40 4.2.1 定電流充放電測試 40 4.2.2 變電流充放電測試 41 4.2.3 循環伏安測試 42 4.3 應用於溼度感測器之效能測試 52 4.3.1 感濕特性量測 52 4.3.2 遲滯現象與應答時間測定 53 4.3.3 試片精準度測定 54 第五章 結論 58 參考文獻 61

    1. Batzill, M. and U. Diebold, The Surface and Materials Science of Tin Oxide. Progress in Surface Science, 2005. 79(2-4): p. 47-154.
    2. Granqvist, C.G. and A. Hultaker, Transparent and Conducting ITO Films: New Developments and Applications. Thin Solid Films, 2002. 411(1): p. 1-5.
    3. Ho, G.W., Gas Sensor with Nanostructured Oxide Semiconductor Materials. Science of Advanced Materials, 2011. 3(2): p. 150-168.
    4. Lewis, B.G. and D.C. Paine, Applications and Processing of Transparent Conducting Oxides. MRS Bulletin, 2000. 25(8): p. 22-27.
    5. Kay, A. and M. Gratzel, Dye-sensitized Core-shell Nanocrystals: Improved Efficiency of Mesoporous Tin Oxide Electrodes Coated with a Thin Layer of an Insulating Oxide. Chemistry of Materials, 2002. 14(7): p. 2930-2935.
    6. Chen, D., et al., Nanowires Assembled SnO2 Nanopolyhedrons with Enhanced Gas Sensing Properties. ACS Appl Mater Interfaces, 2011. 3(6): p. 2112-2117.
    7. Wang, B., et al., Fabrication of a SnO2 Nanowire Gas Sensor and Sensor Performance for Hydrogen. Journal of Physical Chemistry C, 2008. 112(17): p. 6643-6647.
    8. Li, M., et al., Water Pre-adsorption Effect on Room Temperature SnO2 Nanobelt Ethanol Sensitivity in Oxygen-deficient Conditions. Sensors and Actuators B-Chemical, 2011. 158(1): p. 340-344.
    9. Wang, C., et al., Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors (Basel), 2010. 10(3): p. 2088-106.
    10. 黃可龍, 王., 劉素琴, 馬振基, 鋰離子電池原理與技術 五南出版社, 2010. .
    11. 蕭光哲, 快速充放電鋰離子電池負極材料. 工業材料256期, 2008.
    12. 陳金銘, 電動車動力鋰電池材料技術趨勢(下). 工業材料291期, 2011: p. 164-171.
    13. 費定國, 鋰離子電池陽極材料開發. 工業材料165期, 1990.
    14. 楊模樺, 鋰電池材料技術發展. 工業材料237期, 2006.
    15. Tarascon, J.M. and M. Armand, Issues and Challenges Facing Rechargeable Lithium Batteries. Nature, 2001. 414(6861): p. 359-367.
    16. Inaba, M. and Z. Ogumi, Up-to-date Development of Lithium-ion Batteries in Japan. Ieee Electrical Insulation Magazine, 2001. 17(6): p. 6-20.
    17. Barsan, N., M. Schweizer-Berberich, and W. Gopel, Fundamental and Practical Aspects in the Design of Nanoscaled SnO2 Gas Sensors: A Status Report. Fresenius Journal of Analytical Chemistry, 1999. 365(4): p. 287-304.
    18. Xi, G. and J. Ye, Ultrathin SnO2 Nanorods: Template- and Surfactant-free Solution Phase Synthesis, Growth Mechanism, Optical, Gas-sensing, and Surface Adsorption Properties. Inorganic Chemistry, 2010. 49(5): p. 2302-9.
    19. 李孟軒, 摻雜金銀之二氧化錫薄膜對一氧化碳偵測性質之研究. 國立清華大學化學工程所碩士論文, 2007.
    20. 李筱菁, SnO2-based 薄膜氣體感測靈敏度之研究. 國立成功大學材料科學及工程學系博士論文, 2006.
    21. Korotcenkov, G., Metal Oxides for Solid-state Gas Sensors: What Determines Our Choice? Materials Science and Engineering B-Solid State Materials for Advanced Technology, 2007. 139(1): p. 1-23.
    22. Batzill, M., Surface Science Studies of Gas Sensing Materials: SnO2. Sensors, 2006. 6(10): p. 1345-1366.
    23. 林鴻明, 曾., 奈米半導體材料之特殊氣體感測性質. 工業材料157期, 2000.
    24. Weisz, P.B., Effects of Electronic Charge Transfer between Adsorbate and Solid on Chemisorption and Catalysis. Journal of Chemical Physics, 1953. 21(9): p. 1531-1538.
    25. Barsan, N. and U. Weimar, Conduction Model of Metal Oxide Gas Sensors. Journal of Electroceramics, 2001. 7(3): p. 143-167.
    26. Malagu, C., et al., Model for Schottky Barrier and Surface States in Nanostructured n-type Semiconductors. Journal of Applied Physics, 2002. 91(2): p. 808-814.
    27. S., M.Y.N., ESR Study of Adsorbed Oxygen on Tin Dioxide. Oyo Buturi, 1977. 46: p. 580-584.
    28. Traversa, E., Ceramic Sensors for Humidity Detection - The State-of-the-art and Future-developments. Sensors and Actuators B-Chemical, 1995. 23(2-3): p. 135-156.
    29. Chen, Z. and C. Lu, Humidity Sensors: A Review of Materials and Mechanisms. Sensor Letters, 2005. 3(4): p. 274-295.
    30. 洪健彰, 以有機無機混成材料(AMPS/SiO2)製備阻抗式濕度感測器之研究. 中原大學化學工程學系碩士論文, 2002.
    31. 廖淑娟, 利用電漿沉積及後處理固定耐水親水性薄膜及其濕度感測特性研究. 大同大學 材料工程研究所 碩士論文, 2007.
    32. Mathews, D.A., Review of the Lithium Chloride Radiosonde Hygrometer,
    in Proceedings of the Conference on Humidity and Moisture
    . Washington, DC, 1963. VI: p. 219–227.
    33. Sakai, Y., Y. Sadaoka, and M. Matsuguchi, Humidity Sensors Based on Polymer Thin Films. Sensors and Actuators B-Chemical, 1996. 35(1-3): p. 85-90.
    34. Heiland, G.K., D., In Chemical Sensor Technology. Kodansha: Tokyo, 1988. 1: p. 15-38.
    35. Parks, J.H.A.a.G.A., The Electrical Conductivity of Silica Gel in the Presence of Adsorbed Water. Journal of Physical Chemistry C, 1968. 72: p. 3362-3368.
    36. Mukode, S. and H. Futata, A Semiconductive Humidity Sensor. Sensors and Actuators, 1989. 16(1-2): p. 1-11.
    37. Futata, S.M.a.H., A Semiconductive Humidity Sensor. Sensors & Actuators, 1989. 16: p. 1-11.
    38. Korotchenkov, G., V. Brynzari, and S. Dmitriev, Electrical Behavior of SnO2 Thin Films in Humid Atmosphere. Sensors and Actuators B-Chemical, 1999. 54(3): p. 197-201.
    39. Racheva, T.M. and G.W. Critchlow, SnO2 Thin Films Prepared by the Sol-gel Process. Thin Solid Films, 1997. 292(1–2): p. 299-302.
    40. M. Egashira, M.N.a.S.K., Change of Thermal Desorption Behaviour of Adsorbed Oxygen with Water Coadsorption on Ag+-doped Tin(IV) Oxide. Journal of the Chemical Society, Chemical Communications, 1981: p. 1047-1049.
    41. Noboru Yamazoe, J.F., Masato Kishikawa, Interactions of Tin Oxide Surface with O2, H2O and H2. Surface Science, 1979. 86: p. 335-344.
    42. Park, J.-S., et al., Electronic Transport Properties of Amorphous Indium-gallium-zinc Oxide Semiconductor upon Exposure to Water. Applied Physics Letters, 2008. 92(7).
    43. Y.Shimizu, M.S., H. Arai and T. Seiyama, Humidity Sensitive Characteristics of La3+-doped and Undoped SrSnO3. Journal of The Electrochemical Society, 1989. 136: p. 1206-1210.
    44. Bates, S.P., Full-coverage Adsorption of Water on SnO2(110): The Stabilisation of the Molecular Species. Surface Science, 2002. 512(1-2): p. 29-36.
    45. Gercher, V.A. and D.F. Cox, Water-adsorption on Stoichiometric and Defective SnO2(110) Surfaces. Surface Science, 1995. 322(1-3): p. 177-184.
    46. Bandura, A.V., J.D. Kubicki, and J.O. Sofo, Comparisons of Multilayer H2O Adsorption onto the (110) Surfaces of Alpha-TiO2 and SnO2 as Calculated with Density Functional Theory. Journal of Physical Chemistry B, 2008. 112(37): p. 11616-11624.
    47. Lindan, P.J.D., Water Chemistry at the SnO2(110) surface: The Role of Inter-molecular Interactions and Surface Geometry. Chemical Physics Letters, 2000. 328(4-6): p. 325-329.
    48. Tetsuo Morimoto, M.N., and Fujiko Tokuda, Relation between the Amounts of Chemisorbed and Physisorbed Water on Metal Oxides. The Journal of Physical Chemistry, 1969. 73(1): p. 243-248.
    49. Zettlemoyer, E.M.a.A.C., Adsorption of Water Vapour on α-Fe2O3. Discussions of the Faraday Society, 1971. 52: p. 239-254.
    50. Feng, J., et al., Giant Moisture Responsiveness of VS2 Ultrathin Nanosheets for Novel Touchless Positioning Interface. Advanced Materials, 2012. 24(15): p. 1969-74.
    51. Qin, L., et al., The Template-free Synthesis of Square-shaped SnO(2) Nanowires: The Temperature Effect and Acetone Gas Sensors. Nanotechnology, 2008. 19(18): p. 185705.
    52. Liu, J.P., et al., Direct Growth of SnO2 Nanorod Array Electrodes for Lithium-ion Batteries. Journal of Materials Chemistry, 2009. 19(13): p. 1859-1864.
    53. Han, S.J., et al., Simple Synthesis of Hollow Tin Dioxide Microspheres and Their Application to Lithium-ion Battery Anodes. Advanced Functional Materials, 2005. 15(11): p. 1845-1850.
    54. Kim, J.G., et al., SnO(2) Nanorod-planted Graphite: An Effective Nanostructure Configuration for Reversible Lithium Ion Storage. ACS Appl Mater Interfaces, 2011. 3(3): p. 828-35.
    55. Khanna, V.K. and R.K. Nahar, Surface Conduction Mechanisms and the Electrical-properties of Al2O3 Humidity Sensor. Applied Surface Science, 1987. 28(3): p. 247-264.
    56. Kuang, Q., et al., High-sensitivity Humidity Sensor Based on a Single SnO2 nanowire. Journal of the American Chemical Society, 2007. 129(19): p. 6070-+.
    57. Yamazoe, N., Shimizu, Y., et al., Humidity Sensors Principles and Applications. Sensors and Actuators, 1986. 10: p. 379-398.
    58. T. Seiyama, N.Y., H. Arai, Ceramic Humidity Sensors. Sensors and Actuators, 1983. 4: p. 85-96.
    59. Hahn, K.R., et al., First Principles Analysis of H2O Adsorption on the (110) Surfaces of SnO2, TiO2 and Their Solid Solutions. Langmuir, 2012. 28(2): p. 1646-56.
    60. Wu, P., et al., Carbon-coated SnO2 Nanotubes: Template-engaged Synthesis and Their Application in Lithium-ion Batteries. Nanoscale, 2011. 3(2): p. 746-750.
    61. Wang, J., et al., Large-Scale Synthesis of SnO2 Nanotube Arrays as High-Performance Anode Materials of Li-Ion Batteries. Journal of Physical Chemistry C, 2011. 115(22): p. 11302-11305.
    62. Paek, S.-M., E. Yoo, and I. Honma, Enhanced Cyclic Performance and Lithium Storage Capacity of SnO2/Graphene Nanoporous Electrodes with Three-Dimensionally Delaminated Flexible Structure. Nano Letters, 2009. 9(1): p. 72-75.
    63. Park, M.S., et al., Preparation and Electrochemical Properties of SnO2 Nanowires for Application in Lithium-ion Batteries. Angewandte Chemie International Edition, 2007. 46(5): p. 750-3.
    64. Qi, Q., et al., Properties of Humidity Sensing ZnO Nanorods-base Sensor Fabricated by Screen-printing. Sensors and Actuators B-Chemical, 2008. 133(2): p. 638-643.
    65. Chou, K.S., T.K. Lee, and F.J. Liu, Sensing Mechanism of a Porous Ceramic as Humidity Sensor. Sensors and Actuators B-Chemical, 1999. 56(1-2): p. 106-111.
    66. Tai, W.P. and J.H. Oh, Fabrication and Humidity Sensing Properties of Nanostructured TiO2-SnO2 Thin Films. Sensors and Actuators B-Chemical, 2002. 85(1-2): p. 154-157.
    67. Fang, F., et al., UV and Humidity Sensing Properties of ZnO Nanorods Prepared by the Arc Discharge Method. Nanotechnology, 2009. 20(24): p. 245502.
    68. Anbia, M. and S.E.M. Fard, Improving Humidity Sensing Properties of Nanoporous TiO2-10 mol% SnO2 thin film by Co-doping with La3+ and K+. Sensors and Actuators B-Chemical, 2011. 160(1): p. 215-221.
    69. Hernandez-Ramirez, F., et al., High Response and Stability in CO and Humidity Measures Using a Single SnO2 Nanowire. Sensors and Actuators B-Chemical, 2007. 121(1): p. 3-17.
    70. Su, P.-G. and L.-N. Huang, Humidity Sensors Based on TiO2 Nanoparticles/Polypyrrole Composite Thin Films. Sensors and Actuators B-Chemical, 2007. 123(1): p. 501-507.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE