研究生: |
李品璋 Li, Pin-Jhang |
---|---|
論文名稱: |
研究孟加拉玫瑰紅與金奈米粒子間在高分子聚合物與二氧化鈦介質下的螢光增強效應 Fluorescence Enhancement of Rose Bengal by Gold Nanoparticle on Medium of Polymer and Titanium Dioxide |
指導教授: |
陳益佳
Chen, I-Chia |
口試委員: |
黃哲勳
Huang, Jer-Shing 黃郁棻 Huang, Yu-Fen 陳益佳 Chen, I-Chia |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 133 |
中文關鍵詞: | 金屬增強螢光效應 、金奈米粒子 、共軛焦螢光顯微鏡 、二氧化鈦 |
外文關鍵詞: | Metal enhance fluorescence, Gold nanoparticle, Confocal microscopy, Titanium dioxide |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討孟加拉玫瑰紅在不同距離下與金奈米粒子間的作用與螢光增強效應。實驗使用共軛焦螢光顯微鏡,精準的測量單顆金奈米粒子上的染料之螢光生命期。分子與金奈米粒子間的介質,分別選用高分子聚合物或二氧化鈦包裹在金奈米粒子周圍。高分子聚合物介質的部分,我們以 Poly Styrene Sulfonate (PSS) 和 Poly Allyamine Hydrochloride (PAH) 以層覆層 (Layer by Layer) 的方法包覆 70 nm 的金奈米粒子。樣品最後包裹共七層,其厚度控制在1.1-7.3 nm,每一層厚度約 1.05 nm。所測量螢光生命期均呈現雙自然指數衰竭。其螢光生命期TAU1 依層數分別為 34 到 60 ps 與 TAU2 為 82 到 368
ps。另外,二氧化鈦介質的部分,我們修飾金奈米粒子的表面,再與 Titanium isopropoxide (TTIP) 不同的反應時間,分別合成出 5 nm,10 nm,15 nm,20 nm 四種厚度。並測量螢光生命期,亦呈現雙自然指數衰竭。其螢光生命期分別 TAU1 為 24 到 120 ps 與 TAU2 為 241 到 672 ps。最後以實驗測得的結果及參考先前的文獻,我們推導了簡易的動力學模型。我們得到螢光增強效率隨著離金奈米粒子越遠而越弱。其中,以二氧化鈦為介質的動力學機制多了電子轉移的途徑,導致其螢光增強效率有限。
We research the fluorescence enhancement of Rose Bengal on the different distance between Rose Bengal and Gold nanoparticle. In this experiment, we use confocal microscopy to measure the fluorescence lifetime of dye on the single Gold nanoparticle. The medium between molecular and Gold nanoparticle are polymer or TiO2 coating on the surface of Gold nanoparticle. In the polymer coating, we use Poly Styrene Sulfonate (PSS) and Poly Allyamine Hydrochloride (PAH) to coat on the 70 nm of Gold nanoparticle by the Layer by Layer method. We coat 1 to 7 layers, and the thickness are 1.1 nm to 7.3 nm, the average of thickness is 1.05 nm per layer. The fluorescence lifetime are bi-exponent decay. The lifetime of TAU1 are 34 ps to 60 ps, and the lifetime of TAU2 are 282 ps to 368 ps from 1 layer to 7 layers. In the TiO2 coating, we modify the surface of Gold nanoparticle, then add Titanium isopropoxide (TTIP) to coat 5 nm, 10 nm, 15 nm and 20 nm of thickness with different reaction time. And the fluorescence lifetime are also bi-exponent decay. The sample coating from 5 nm to 20 nm, which TAU1 are 24 ps to 120 ps, TAU2 are 241 ps to 672 ps. Finally, we use the experiment result and some reference to propose the simple kinetic mechanism. The fluorescence enhancement are decrease when the distance increase. The fluorescence enhancement of dye are limited on the medium of TiO2, because the excited of dye can decay by electron transfer.
1) Hasobe T; Imahori H; Kamat PV; Ahn TK; Kim SK; Kim D; Fujimoto A; Hirakawa T; Fukuzumi S. 2005, Am. Chem.Soc , 127, 1216.
2) Shama, P.; Brown, S.; Walter, G.; Santra, S.; Moudgil, B. 2006. Adv. Colloid Interface Sci. 2006, 16, 471.
3) Hasobe, T.; Imahori, H.; Kamat, P. V.; Ahn, T. K.; Kim,D.; Fujimoto, Airakawa, T.; Fukuzumi, S. 2005. J. Am. Chem. Soc, 127, 1216.
4) Katherine A.; Willets; Richard P.; Van Duyne. 2007. Phys. Chem. 58:267–97.
5) Jian Zhang,; Yi Fu; Joseph R. 2007. J Phys Chem C, 111,50-56.
6) Chris D.; Geddes; Joseph R.; Lakowicz. 2002. Journal of Fluorescence. Vol. 12, No. 2,121-128.
7) Alessandro Esposito, Fred S. Wouters. 2004, John Wiley and Sons, Inc.
8) Rakesh Singh Moirangthem; Mohammad Tariq Yaseen; Pei-Kuen Wei; Ji-Yen Cheng; Yia-Chung Chang. 2012.Bio. Opt. Express. 3, no.5, 907.
9) Chance R R; Prock A; Sylbey R. Molecular fluorescence and energy transfer near interfaces Advances in Chemical Physics. Prigogine and S A Rice (New York:
Wiley-Interscience) 1978, vol 37, ed I,1–65.
10) Wylie J M; Sipe J E. 1984, Phys.Rev. A, 30, 1185-1193.
11) Carminati R; Greffet J-J; Henkel C; Vigoureux J M. 2006 , Opt.Commun,261,368-375.
12) odahl P; Floris van Driel A; Nikolaev I S; Irman A; Overgaag K; Vanmaekelbergh D; Vos W L. 2004, Nature 430 654–7.
13) Barnes W L; Dereux A; Ebbesen T W. 2003 , Nature,424 824-30.
14) Raether H. 1988 , (Springer Tracts in Modern Physics vol 111) (Berlin: Springer)
15) Born M; Wolf E. Principles of Optics 1999 , 7th edn (Cambridge: Cambridge University Press).
16) C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles 1983 (Wiley,New York,).
17) S. GR´ Esillon; R. Lecaqu; EL. Williame; J.C. Rivoal. 2006,. Appl. Phys.,84, 167–173.
18) C.F. Bohren; D.R. Huffman. Absorption and Scattering of Light by Small Particles 1998,. Wiley, New York.
19) C. Matzler. 2002, Institut für Angewandte Physik, University of Bern – CH.
20) Van de Hulst H C. Light Scattering by Small Particles 1981, (New York: Dover).
21) E. Zaremba. 1987, PHYSICAL REVIEW B, VOLUME 35,2.
22) Kress A; Hofbauer F; Reinelt N; Kaniber M; Krenner H J; Meyer R; Bohm G; Finley J J. 2005, Phys. Rev. B (Condens. Matter Mater. Phys.) 71 241304.
23) Bek A; Klar T; Feldmann J. 2007 (Munich, ermany).
24) Jackson J D. Classical Electrodynamics 2nd edn 1975, (New York: Wiley).
25) Mathews J; Walker R L. Mathematical Methods of Physics 2nd edn 1970,(Reading, MA: Addison-Wesley).
26) Novotny L ; Hecht B. Principles of Nano-Optics 2006, (Cambridge: Cambridge University Press).
27) Kreibig U ; Vollmer M. 1995, Series in Material Science vol 25.
28) Gryczynski I; Malicka J; Gryczynski Z; Lakowicz J R. 2004, Anal. Biochem. 324 170–82.
29) Anger P; Bharadwaj P; Novotny L. 2006, Phys. Rev. Lett.
30) Nomura M; Iwamoto S; Yang T; Ishida S; Arakawa Y. 2006, Appl. Phys. Lett.
31) Fr¨ ohlich H. 1958, (Monographs on the Physics and Chemistry of Materials) 2nd edn (London:Oxford University Press).
32) Glass A M; Wokaun A; Heritage J P; Bergman J G; Liao P F; Olson D H. 1981, Phys. Rev. B.
33) Kelly K L; Coronado E; Zhao L L; Schatz G C. 2003 , J. Phys. Chem. B 107 668–77.
34) Granqvist C G; Hunderi O, 1977, Phys. Rev. B.
35) Kalkbrenner T; Hkanson U; Schadle A; Burger S; Henkel C; Sandoghdar V. 2005, Phys. Rev. Lett.
36) Hao E ; Schatz G C. 2004, J. Chem. Phys.
37) Link S; El-Sayed M A. 2000, Rev. Phys. Chem.
38) Krenn J R; Ditlbacher H; Schider G; Hohenau A; Leitner A; Aussenegg F R. 2003, J. Microsc. 209 167–72.
39) Thomas M; Greffet J-J; Carminati R; Arias-Gonzaz J R. 2004. Appl. Phys. Lett.
40) Itoh T; Ozaki Y; Yoshikawa H; Ihama T; Masuhara H. 2006. Appl. Phys. Lett ,88,084102.
41) Perner M; Gresillon S; Marz J; von Plessen G; Feldmann J; Porstendorfer J; Berg K-J; Berg G. 2000 ,Phys. Rev. Lett, 85 , 792.
42) Dulkeith E; Ringler M; Klar T A; Feldmann J; Javier A M; Parak W J. 2005, Nano Lett, 5 ,585-589.
43) K¨ uhn S; Høakanson U; Rogobete L; Sandoghdar V. 2006 , Phys. Rev. Lett, 97, 017402.
44) Dulkeith E; Morteani A C; Niedereichholz T; Klar T A; Feldmann J; Levi S A; van Veggel F C J M; Reinhoudt D N; M¨ oller M ; Gittins D I. 2002 , Phys. Rev.Lett, 89, 203002.
45) Itoh T; Ozaki Y; Yoshikawa H; Ihama T; Masuhara H. 2006 , Appl. Phys, 88, 084102.
46) Xu G; Chen Y; Tazawa M; Jin P.2006. Appl. Phys. Lett, 88, 043114.
47) Prodan E; Radloff C; Halas N J; Nordlander P. 2003. Science,302,419-422.
48) Kottmann J P; Martin O J F. 2001 , Opt. Express 8 655–63.
49) Li K; Stockman M I; Bergman D J. 2003, Phys. Rev. Lett, 91, 227402.
50) Xu H; K¨ all M . 2002, Phys. Rev. Lett, 89, 246802.
51) Zayats A V; Smolyaninov I I . 2003 , J. Opt. A: Pure Appl. Opt. 5 S16–50.
52) Barnes W; 1998. Mod, Opt. 45, 661-99.
53) Emmanuel F, Samuel G. 2008. J. Phys. D: Appl.Phys. 41, 013001.
54) Yan Zhou, Changwon Lee, Jinnan Zhang and Peng Zhang. 2013. J. Mater. Chem. C, 1, 3695
55) Dai, Z. F.; Dahne, L.; Donath, E.; Mohwald, H. 2002. J. Phys. Chem. B, 106, 11501-11508.
56) Link,S; Ei-Sayed,M.A. 2003. Annu. Rev. Phys. Chem. 54,331-366.
57) Link,S; Burda,C; Ei-Sayed,M.A. 1999. J. Chem. Phys, 111,3.
58) Hu,M; Hartland,G.V. 2003. J.Phys. Chem. B,107,1284-1284.
59) M.M Byranvand; A.N Kharat; A. Badiei;M.H Bazargan. 2012. Journal of Optoelectronics and Biomedical Materials,4,3,49-57.