研究生: |
顏弘建 Hung-Chien Yen |
---|---|
論文名稱: |
胞嘧啶及其水合團簇之氣相超快激發態動態學研究 Ultrafast excited-state dynamics of cytosine and its water clusters |
指導教授: |
鄭博元
Po-Yuan Cheng |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | 胞嘧啶 、水合團簇 、激發–探測多光子游離法 、瞬時光譜 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主旨在以飛秒雷射激發–探測多光子游離法結合飛行時間質譜技術研究氣相中胞嘧啶(cytosine)與其水合團簇(cluster)在激發態的動態學。我們以266 nm的飛秒雷射脈衝將分子激發至電子激發態,之後利用另一道800 nm的探測飛秒雷射在不同的時間延遲下將激發態游離並且以一具飛行時間質譜儀(time-of-flight mass spectrometer, TOFMS)偵測。
cytosine的瞬時光譜呈現雙指數衰減(τ1 = 0.7 ps, τ2 = 5.1 ps),我們初步認為較快的衰減時間常數為cytosine在S1(ππ*)時經過分子內振動能量重新分配(intramolecular vibrational energy redistribution, IVR)的過程;較慢的衰減時間常數為分子越過一個由ππ*和nNπ*位能面相交而產生的能障。當cytosine與一個水分子錯合後,被激發到激發態的弛緩時間常數比未錯合時快了10倍左右(τ= 450 fs);與兩個水分子結合後,在激發態的弛緩時間常數又快了兩倍左右(τ~ 200 fs),對此我們提出了一些可能的解釋。較大的水合團簇在cytosine-(H2O)n≧4時出現了一個數十ps的衰減部份,我們推測在n≧4的某個大小之團簇會產生激發態質子轉移(proton transfer),亦即被激發後N上的H原子產生酸性,加上水分子團簇到達足夠的質子親和力(proton affinity)後,質子轉移因而可以發生。
[1] (a) 維基百科; (b) Wacker, A. In Progress in Nucleic Acid Research; Davidson, J. N., Cohn, W. E., Eds.; Academic Press: New York, 1963; Vol. 1, pp 370-395.
[2] Bensasson, R. V.; Land, E. J., Truscott, T. G. Excited States and Free Radicals in Biology and Medicine; Oxford University Press: Oxford, 1993; Chapter 5.
[3] Kohen, E.; Santus, R.; Hirschberg, J. G. Photobiology; Academic Press: San Diego, 1995; Chapter 5.
[4] Kim, N. J.; Kang, H.; Jeong, G.; Kim, Y. S.; Lee, K. T.; Kim, S. K. Proc. Natl. Acad. Sci. U.S.A. 98, 4841 (2001).
[5] Broo, A. J. Phys. Chem. A 102, 526 (1998).
[6] Saenger, W. Principles of Nucleic Acid Structure; Springer-Verlag: New York, 1984; pp 126-131.
[7] Callis, P. R. Annu. Rev. Phys. Chem. 34, 329 (1983).
[8] Daniels, M.; Hauswirth, W. Science 171, 675 (1971).
[9] Reuther, A.; Iglev, H.; Laenen, R. and Laubereau, A. Chem. Phys. Lett. 325, 360 (2000).
[10] Pecourt, J.-M.; Peon, J. and Kolher, B. J. Am. Chem. Soc. 123, 10370 (2001).
[11] Gustavsson, T.; Sharonov, A.; Onidas, D. and Markovitsi, D. Chem. Phys. Lett. 356, 49 (2002).
[12] Onidas, D.; Markovitsi, D.; Marguet, S.; Sharonov, A. and Gustavsson, T. J. Phys. Chem. B 106, 11367 (2002).
[13] Peon , J. and Zewail, A. Chem. Phys. Lett. 348, 255 (2001).
[14] Crespo-Herna´ndez, C. E.; Cohen, B.; Hare, P. M.; Kohler, B. Chem. Rev. 104, 1977 (2004).
[15] Domcke, W. and Stock, G. in Advances in Chemical Physics, edited by Prigogine, I. and Rice, S. A. (Wiley, New York, 1997), Vol. 100, pp. 1–168.
[16] Diau, E. W.-G.; De Feyter, S. and Zewail, A. H. J. Chem. Phys. 110, 9785 (1999).
[17] Wurzer, A. J.; Wihelm, T.; Piel, J. and Riedle, E. Chem. Phys. Lett. 299, 296 (1999).
[18] Nikogosyan, D. N.; Letokhov, V. S. Riv. Nuovo Chim. 8, 1 (1983).
[19] Kang, H.; Lee, K. T.; Jung, B.; Ko, Y. J. and Kim, S. K. J. Am. Chem. Soc. 124, 12958 (2002).
[20] Canuel, C.; Mons, M.; Piuzzi, F.; Tardivel, B.; Dimicoli, I.; Elhanine, M. J. Chem. Phys. 122, 074316 (2005).
[21] Sharonov, A.; Gustavsson, T.; Carre, V.; Renault, E.; Markovitsi, D. Chem. Phys. Lett. 380, 173 (2003).
[22] Orlov, V. M.; Smirnov, A. N.; Varshavsky, Y. M. Tetrahedron Lett. 48, 4377 (1976).
[23] (a) Hobza, P. and Sponer, J. Chem. Rev. 99, 3247 (1999); (b) Sponer, J. and Hobza, P. J. Phys. Chem.
[24] van Mourik, T.; Benoit, D. M.; Price, S. L. and Clary, D. C. Phys. Chem. Chem. Phys. 2, 1281 (2000).
[25] Clary, D. C.; Benoit, D. M. and van Mourik, T. Acc. Chem. Res. 33, 441 (2000).
[26] Kobayashi, R. J. Phys. Chem. A 102, 10813 (1998).
[27] Sambrano, J. R.; Souza, A. R.; Queralt, J. J. and Andre´s, J. Chem. Phys. Lett. 317, 437 (2000).
[28] Kryachko, E. S.; Nguyen, M. T. and Zeegers-Huyskens, T. J. Phys. Chem. A 105, 1288 (2001).
[29] Kryachko, E. S.; Nguyen, M. T. and Zeegers-Huyskens, T. J. Phys. Chem. A 105, 1934 (2001).
[30] Chandra, A. K.; Nguyen, M. T. and Zeegers-Huyskens, T. J. Mol. Struct. 519, 1 (2000).
[31] Colominas, C.; Luque, F. J. and Orozco, M. J. Am. Chem. Soc. 118, 6811 (1996).
[32] Gorb, L. and Leszczynski, J. Int. J. Quantum Chem. 70, 4 (1998).
[33] Gorb, L. and Leszczynski, J. Int. J. Quantum Chem. 65, 996 (1997).
[34] Trygubenko, S. A.; Bogdan, T. V.; Rueda, M.; Orozco, M.; Luque, F. J.; Sponer, J.; Slavicek, P.; Hobza, P. Phys. Chem. Chem. Phys. 4, 4192 (2002).
[35] Szczesniak, M.; Szczepaniak, K.; Kwiatkowski, J. S.; Kubulat, K. and Person, W. B. J. Am. Chem. Soc. 110, 8319 (1988).
[36] Brown, R. D.; Godfrey, P. D.; McNaughton, D. and Pierlot, A. P. J. Am. Chem. Soc. 111, 2308 (1989).
[37] Nir, E.; Mu¨ller, M.; Grace, L. I.; de Vries, M. S. Chem. Phys. Lett. 355, 59 (2002).
[38] Tomic, K.; Tatchen, J.; Marian, C. M. J. Phys. Chem. A 109, 8410 (2005).
[39] Lührs, D. C.; Viallon, J. and Fisher, I. Phys. Chem. Chem. Phys. 3, 1827 (2001).
[40] Stert, V.; Hesse, L.; Lippert, H.; Schulz, C. P. and Radloff, W. J. Phys. Chem. A 106, 5051 (2002).