研究生: |
陳乃嘉 Nai-Chia Chen |
---|---|
論文名稱: |
具有軸對稱與三點共線的平面五體中心構形 On Symmetric Planar Central Configurations for the 5-Body Problem with 3 Collinear Masses |
指導教授: |
陳國璋
Kuo-Chang Chen |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 17 |
中文關鍵詞: | 中心構形 |
外文關鍵詞: | central configuration, relative equilibrium |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
關於N體問題(N大於四),平面中心構形的個數是否有限仍是未知。我們加入兩個條件:軸對稱與具有三點共線,來研究五體平面中心構形個數的有限性。在這兩個條件的限制下,証明了這兩個條件的平面五體中心構形必須是某些形狀;我們亦証明:對任何質量的選取,平面五體中心構形的個數為有限,並且給了上界。
This article concerns the N-body problem on the existence of non-collinear
planar central configurations with three masses on a line. For the case N = 4,
the nonexistence can be easily proved with the Perpendicular Bisector
Theorem, and thus we study the case N = 5. We prove that with the
presence of axial symmetry, such central configurations could exist only in
certain shapes. We also give an upper bound for the number of such
configurations for any choice of masses.
[1] Bernstein, D.N.: The number of roots of a system of equations, Fun.
Anal. Appl., 9, 183V185 (1975)
[2] Cox, D., Little, J., O'Shea, D.: Using Algebraic Geometry, New York:
Springer, 1998.
[3] ElBialy, M. S.: Collision singularities in celestial mechanics. SIAM J.
Math. Anal. 21, 1563V1593 (1990)
[4] Hagihara,Y.: Celestial Mechanics, Vol.1, MIT press, Cambridge, 240-
241 (1970)
[5] Hampton, M., Moeckel, R.: Finiteness of relative equilibria of the four-
body problem, Invent. Math. 163, 289-312 (2006)
[6] Khovansky, A.G.: Newton polytopes and toric varieties, Functional
Anal. Appl. 11, 289-298 (1977)
[7] Kushnirenko, A.G.: Newton polytopes and the Bezout theorem, Func-
tional Anal. Appl. 10, 233-235 (1976)
[8] Li, T. Y., Li, X.: amixvol, http://www.math.msu.edu/li.
[9] Moeckel, R.: On central congurations, Math. Z. 205, 499-517 (1990)
[10] Moeckel, R.: Generic niteness for Dziobeck congurations, Trans. Am.
Math. Soc. 353, 4673-4686 (2001)
[11] Saari, D.G.: Manifold structure for collisions and for hyperboic-
parabolic orbits in the N-body problem, J. Di. Eqs. 55, 300-329 (1984)
[12] Saari, D.G.: Collision, Rings, and Other Newtonian N-body Problem
CBMS regional conference series in mathematics, no. 104., American
Mathematical Society, Providence, R.I. (2005)
[13] Williams, W.L.: Permanent conguration in the problem of ve bodies,
Trans. Amer. Math. Soc. 44, 563-579 (1938)
[14] Wintner, A.: The Analytical Foundations of Celestial Mechanics,
Princeton Math. Series 5, Princeton Iniversity Press, Princetion, MJ.,
(1941)