簡易檢索 / 詳目顯示

研究生: 陳亭旭
Chen, Ting-Hsu
論文名稱: 奈米線蛋白質生醫感測器研發及應用於低濃度急性腎損傷生物標記檢測
Development of Nanowire-based Biosensors for Low-Concentration Detection of Acute Kidney Injury Biomarkers
指導教授: 洪健中
Hong, Chien-Chong
劉通敏
Liou, Tong-Miin
口試委員: 黃國柱
Hwang, Kuo-Chu
劉安順
Liu, An-Shun
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2019
畢業學年度: 108
語文別: 中文
論文頁數: 87
中文關鍵詞: 介電泳組裝銀奈米線電化學阻抗譜蛋白質檢測急性腎損傷嗜中性白血球明膠酶相關運載蛋白
外文關鍵詞: dielectrophoresis assembly, Ag nanowire, Electrochemical Impedance Spectroscopy, Protein detection, acute kidney injury, neutrophil gelatinase-associated transport protein
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 從美國腎臟登錄系統(USRDS)在2014的年度報告中,顯示台灣在罹患腎衰竭末期的人口比例位居世界第一,而且人數仍然有逐年增加的趨勢。雖然現今醫療上有部分治療腎損傷的方法,不過這些治療方式一般都會產生某些副作用,不論對於醫生或病人來說是都是非常棘手的疾病,若我們可以在腎臟疾病的早期就診斷出問題,就能及早預防,而近年生物標記物NGAL(neutrophil gelatinase-associated lipocalin)被認為能應用於早期診斷急性腎損傷,對該症有極佳的預測能力。本研究使用銀奈米線,設計製作以銀奈米線為基礎的微電極電子式生醫感測器,運用於檢測急性腎損傷生物標記物NGAL,並且本研究利用銀奈米線反應靈敏之特性,加上奈米線表面化學修飾急性腎損傷標記物生物辨識層,配合串聯式與並聯式電極增加靈敏度,達到能準確檢測生物標記物之目的。本研究實驗中,利用了介電泳的原理配合微流體進行奈米線組裝,通過控制不同參數來達成穩健組裝單根銀奈米線。通過實驗確認,徹底探討流道高度、溶液濃度與流體速度等製成參數最佳化。而同時也透過傅立葉轉換紅外線光譜儀分析下,在修飾後銀奈米線上分析出o-PD(o-phenylenediamine)峰值存在,以及醯胺等蛋白質特徵波段有峰值發生,確認單體修飾成功。
    本研究應用於急性腎損傷生物標記物NGAL檢測,以串聯與並聯電極晶片進行檢測,其中最優者為並聯式三對電極晶片,靈敏度可達0.25 pF/ppb,LOD(limit of detection)為10 ppb。在拓印因子測試上來看,MIP(molecularly imprinted polymer)生醫感測器有顯著的性能提升,MIP/NIP(non-imprinted polymer)為537%。選擇性的測試方面,分別使用CRP(C-Reactive protein) PBS溶液、IL-6 (interleukin-6) PBS溶液與BSA(Bovine serum albumin)水溶液進行生醫感測器的選擇性測試,實驗結果顯示本研究對NGAL蛋白質具有優秀的選擇性,電子式響應變化比例分別為其他三種蛋白質的4.47倍、4.91倍與7.5倍。


    In the 2014 annual report of The United States Renal Data System (USRDS), Taiwan's population at the end of kidney failure is ranked first in the world, and the number is still increasing year by year. Although there are some methods for treating kidney damage in medical care today, these treatments generally have some side effects, which are very difficult diseases for doctors or patients. If we can diagnose problems early in kidney disease, it can be prevented. In recent years, the biomarker NGAL(neutrophil gelatinase-associated lipocalin) is considered to be useful for the early diagnosis of acute kidney injury, and has excellent predictive power for the disease. In this study, a silver nanowire-based microelectrode electronic biomedical sensor was designed and used to detect the acute kidney injury biomarker NGAL.The characteristics, together with the nanowire surface chemical modification of the acute kidney injury marker bio-identification layer, combined with the series and parallel electrodes to increase the sensitivity, to achieve the purpose of accurate detection of biomarkers. In this research experiment, the principle of dielectrophoresis was also used with microfluidics for nanowire assembly, and a single silvery nanowire was assembled by controlling different parameters. Through experiments, it is confirmed that the parameters such as the flow path height, the solution concentration and the fluid velocity are thoroughly optimized. At the same time, through the analysis of Fourier transform infrared spectrometer, the presence of o-PD peaks was analyzed on the modified silver nanowire, and the peaks of protein characteristic bands such as indoleamine occurred, confirming the success of monomer modification.
    This study was applied to the detection of acute kidney injury biomarker NGAL, which was tested in series and parallel electrode wafers. The best one was a parallel three-pair electrode wafer with sensitivity of 0.25 pF/ppb and LOD of 10 ppb. In terms of the rubbing factor test, the MIP biomedical sensor has a significant performance improvement with a MIP/NIP of 537%. For selective testing, CRP PBS solution, IL-6 PBS solution and BSA aqueous solution were used for biomedical sensor selectivity test. The results showed that the study has excellent selectivity for NGAL protein. The proportion of electronic response changes was 4.47 times, 4.91 times and 7.5 times that of the other three proteins, respectively.

    摘要 I Abstract III 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 傳統蛋白質檢測技術 2 1.1.1 SDS聚丙烯酰胺凝膠電泳(SDS-PAGE) 3 1.1.2 酵素連結免疫吸附分析法(ELISA) 4 1.1.3 傳統蛋白質檢測技術比較 5 1.2 生醫感測器 6 1.2.1生醫感測器發展 7 1.2.2奈米顆粒生醫感測器 11 1.2.3奈米線生醫感測器 13 1.2.4二維奈米材料生醫感測器 16 1.3 奈米材料感測器比較 18 1.4 急性腎損傷生物標記物生醫感測器現行發展 21 1.5 研究動機 24 1.6 研究目的與方法 24 1.7 論文架構 25 第二章 奈米線特性與阻抗式感測器 27 2.1 半導體式奈米線簡介與基本性質 27 2.1.1 半導體能帶結構 27 2.1.2 半導體摻雜 29 2.1.3 擴散與飄移電流 30 2.1.4 半導體光電特性 31 2.2 導體式奈米線簡介與基本性質 32 2.2.1 導體式奈米線導電度 32 2.2.2 導體式奈米線力學性質 34 第三章 低濃度蛋白質奈米線生醫感測器設計與介電泳組裝與技術平台 35 3.1 生醫感測器設計 35 3.2 串聯與並聯式場效電晶體 38 3.3 介電泳製程參數探討 38 3.3.1 流道高度探討 38 3.3.2 溶液濃度探討 42 3.3.3 溶液流速探討 44 3.3.4 組裝參數探討結果與討論 48 3.4 奈米線生物標記物修飾 50 3.4.1 液滴化學修飾之生物辨識層 51 3.4.2 奈米線表面之生物辨識層精準聚合 54 3.5 不確定性分析 59 3.6 結論 61 第四章 奈米線生醫感測器應用於低濃度蛋白質檢測 62 4.1 奈米線生醫感測器應用 62 4.2 感測原理 64 4.3 實驗架構 65 4.4 奈米線生醫感測器應用於NGAL蛋白質檢測 66 4.5 結論 73 第五章 總結與未來發展 75 5.1 總結 75 5.2 研究成果 75 5.3 學術貢獻與創新點 77 5.4 未來研究建議 80 附錄 81 參考文獻 83

    [1] Dimri, Goberdhan P., et al. "A biomarker that identifies senescent human cells in culture and in aging skin in vivo." Proceedings of the National Academy of Sciences 92.20 (1995): 9363-9367.
    [2] Mishra, Jaya, et al. "Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury." Journal of the American Society of Nephrology 14.10 (2003): 2534-2543.
    [3] Davidson, J., J. Mathieson, and A. W. Boyne. "The use of automation in determining nitrogen by the Kjeldahl method, with final calculations by computer." Analyst 95.1127 (1970): 181-193.
    [4] Summers, Donald F., J. V. Maizel Jr, and J. E. Darnell Jr. "Evidence for virus-specific noncapsid proteins in poliovirus-infected HeLa cells." Proceedings of the National Academy of Sciences of the United States of America 54.2 (1965): 505.
    [5] Fujiki, Yukio, et al. "Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum." The Journal of cell biology 93.1 (1982): 97-102.
    [6] Engvall, Eva, and Peter Perlmann. "Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G." Immunochemistry 8.9 (1971): 871-874.
    [7] Liang, Jiajie, et al. "Silver nanoprism etching-based plasmonic ELISA for the high sensitive detection of prostate-specific antigen." Biosensors and Bioelectronics 69 (2015): 128-134.
    [8] Clark Jr, Leland C., and Champ Lyons. "Electrode systems for continuous monitoring in cardiovascular surgery." Annals of the New York Academy of sciences 102.1 (1962): 29-45.
    [9] Bergveld, Piet. "Development of an ion-sensitive solid-state device for neurophysiological measurements." IEEE Transactions on Biomedical Engineering 1 (1970): 70-71.
    [10] Miyahara, Yuji, et al. "Urea sensor based on an ammonium-ion-sensitive field-effect transistor." Sensors and Actuators B: Chemical 3.4 (1991): 287-293.
    [11] Caras, Steve, and Jiri Janata. "Field effect transistor sensitive to penicillin." Analytical Chemistry 52.12 (1980): 1935-1937.
    [12] Jindal, Rohit, and Steven M. Cramer. "On-chip electrochromatography using sol–gel immobilized stationary phase with UV absorbance detection." Journal of Chromatography A 1044.1-2 (2004): 277-285.
    [13] De Lorimier, Robert M., et al. "Construction of a fluorescent biosensor family." Protein Science 11.11 (2002): 2655-2675.
    [14] Hung, Yin Pun, et al. "Imaging cytosolic NADH-NAD+ redox state with a genetically encoded fluorescent biosensor." Cell metabolism 14.4 (2011): 545-554.
    [15] Piunno, Paul AE, et al. "Fiber optic biosensor for fluorimetric detection of DNA hybridization." Analytica Chimica Acta 288.3 (1994): 205-214.
    [16] Liu, Xiaojing, and Weihong Tan. "A fiber-optic evanescent wave DNA biosensor based on novel molecular beacons." Analytical Chemistry 71.22 (1999): 5054-5059.
    [17] Slavık, R., J. Homola, and E. Brynda. "A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B." Biosensors and Bioelectronics17.6-7 (2002): 591-595.
    [18] Leung, Angela, P. Mohana Shankar, and Raj Mutharasan. "A review of fiber-optic biosensors." Sensors and Actuators B: Chemical 125.2 (2007): 688-703.
    [19] Curie, Jacques, and Pierre Curie. "Development by pressure of polar electricity in hemihedral crystals with inclined faces." Bull. soc. min. de France 3 (1880): 90.
    [20] Guilbault, George G. "Determination of formaldehyde with an enzyme-coated piezoelectric crystal detector." Analytical chemistry 55.11 (1983): 1682-1684.
    [21] Sakai, Go, et al. "Selective and repeatable detection of human serum albumin by using piezoelectric immunosensor." Sensors and Actuators B: Chemical 24.1-3 (1995): 134-137.
    [22] Ito, Keiko, Koji Hashimoto, and Yoshio Ishimori. "Quantitative analysis for solid-phase hybridization reaction and binding reaction of DNA binder to hybrids using a quartz crystal microbalance." Analytica chimica acta 327.1 (1996): 29-35.
    [23] Horrocks, BenjamináR. "Functionalised monolayer for nucleic acid immobilisation on gold surfaces and metal complex binding studies." Analyst 123.4 (1998): 753-757.
    [24] Nie, L-H., T-Q. Wang, and S. Z. Yao. "Determination of sulpha-drugs with a piezoelectric sensor." Talanta 39.2 (1992): 155-158.
    [25] do Nascimento, Noelle M., et al. "Label-free piezoelectric biosensor for prognosis and diagnosis of Systemic Lupus Erythematosus." Biosensors and Bioelectronics 90 (2017): 166-173.
    [26] Haes, Amanda J., and Richard P. Van Duyne. "A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles." Journal of the American Chemical Society 124.35 (2002): 10596-10604.
    [27] Jia, Jianbo, et al. "A method to construct a third-generation horseradish peroxidase biosensor: Self-assembling gold nanoparticles to three-dimensional sol− gel network." Analytical Chemistry 74.9 (2002): 2217-2223.
    [28] Luo, Shijun, et al. "Gas-sensing properties and complex impedance analysis of Ce-added WO3 nanoparticles to VOC gases." Solid-state electronics 51.6 (2007): 913-919.
    [29] Park, Sunghoon, et al. "Oxidizing gas sensing properties of the n-ZnO/p-Co3O4 composite nanoparticle network sensor." Sensors and Actuators B: Chemical 222 (2016): 1193-1200.
    [30] 楊素華、蔡銘維"一維奈米技術"科學發展(2012)471期:62-71。
    [31] Kolmakov, Andrei, et al. "Detection of CO and O2 using tin oxide nanowire sensors." Advanced Materials 15.12 (2003): 997-1000.
    [32] Kolmakov, A., et al. "Enhanced gas sensing by individual SnO2 nanowires and nanobelts functionalized with Pd catalyst particles." Nano letters 5.4 (2005): 667-673.
    [33] So, Hye-Mi, et al. "Single-walled carbon nanotube biosensors using aptamers as molecular recognition elements." Journal of the American Chemical Society 127.34 (2005): 11906-11907.
    [34] Gao, Zhiqiang, et al. "Silicon nanowire arrays for label-free detection of DNA." Analytical chemistry 79.9 (2007): 3291-3297.
    [35] Azmi, MA Mohd, et al. "Highly sensitive covalently functionalised integrated silicon nanowire biosensor devices for detection of cancer risk biomarker." Biosensors and Bioelectronics 52 (2014): 216-224.
    [36] Wang, Yuliang, Xuchuan Jiang, and Younan Xia. "A solution-phase, precursor route to polycrystalline SnO2 nanowires that can be used for gas sensing under ambient conditions." Journal of the American Chemical Society 125.52 (2003): 16176-16177.
    [37] Novoselov, Kostya S., et al. "Electric field effect in atomically thin carbon films." science 306.5696 (2004): 666-669.
    [38] Yoon, Hyeun Joong, et al. "Carbon dioxide gas sensor using a graphene sheet." Sensors and Actuators B: Chemical 157.1 (2011): 310-313.
    [39] Wu, Wei, et al. "Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing." Sensors and Actuators B: Chemical 150.1 (2010): 296-300.
    [40] Wang, Ying, et al. "Application of graphene-modified electrode for selective detection of dopamine." Electrochemistry Communications 11.4 (2009): 889-892.
    [41] Alwarappan, Subbiah, et al. "Probing the electrochemical properties of graphene nanosheets for biosensing applications." The Journal of Physical Chemistry C 113.20 (2009): 8853-8857.
    [42] Jiang, Wentao, et al. "Electrochemical immunosensor for the detection of interleukin-17 based on Cd2+ incorporated polystyrene spheres." Sensors and Actuators B: Chemical 185 (2013): 658-662.
    [43] Du, Shuping, et al. "Electrochemiluminescence immunosensor for tumor markers based on biological barcode mode with conductive nanospheres." Biosensors and Bioelectronics 53 (2014): 135-141.
    [44] Li, Peng, Bo Zhang, and Tianhong Cui. "Towards intrinsic graphene biosensor: A label-free, suspended single crystalline graphene sensor for multiplex lung cancer tumor markers detection." Biosensors and Bioelectronics 72 (2015): 168-174.
    [45] Lerner, Mitchell B., et al. "Detecting Lyme disease using antibody-functionalized single-walled carbon nanotube transistors." Biosensors and Bioelectronics 45 (2013): 163-167.
    [46] Kannan, Palanisamy, Ho Yee Tiong, and Dong-Hwan Kim. "Highly sensitive electrochemical determination of neutrophil gelatinase-associated lipocalin for acute kidney injury." Biosensors and Bioelectronics 31.1 (2012): 32-36.
    [47] Yukird, Jutiporn, et al. "Label-free immunosensor based on graphene/polyaniline nanocomposite for neutrophil gelatinase-associated lipocalin detection." Biosensors and Bioelectronics 87 (2017): 249-255.
    [48] Abbas, Abdennour, et al. "Hot spot‐localized artificial antibodies for label‐free plasmonic biosensing." Advanced functional materials 23.14 (2013): 1789-1797.
    [49] Iskierko, Zofia, et al. "Molecularly imprinted polymer (MIP) film with improved surface area developed by using metal–organic framework (MOF) for sensitive lipocalin (NGAL) determination." ACS applied materials & interfaces 8.31 (2016): 19860-19865.
    [50] Li, Liang-shi, et al. "Band gap variation of size-and shape-controlled colloidal CdSe quantum rods." Nano Letters 1.7 (2001): 349-351.
    [51] Kan, Shihai, et al. "Synthesis and size-dependent properties of zinc-blende semiconductor quantum rods." Nature materials 2.3 (2003): 155.
    [52] De Franceschi, S., et al. "Single-electron tunneling in InP nanowires." Applied Physics Letters 83.2 (2003): 344-346.
    [53] Thelander, Claes, et al. "Single-electron transistors in heterostructure nanowires." Applied Physics Letters 83.10 (2003): 2052-2054.
    [54] Kind, Hannes, et al. "Nanowire ultraviolet photodetectors and optical switches." Advanced materials 14.2 (2002): 158-160.
    [55] Law, Matt, et al. "Photochemical sensing of NO2 with SnO2 nanoribbon nanosensors at room temperature." Angewandte Chemie 114.13 (2002): 2511-2514.
    [56] Cui, Yi, et al. "Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species." Science293.5533 (2001): 1289-1292.
    [57] Hsu, Po-Chun, et al. "Performance enhancement of metal nanowire transparent conducting electrodes by mesoscale metal wires." Nature communications 4 (2013): 2522.
    [58] Lee, Phillip, et al. "Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network." Advanced materials 24.25 (2012): 3326-3332.
    [59] Freer, Erik M., et al. "High-yield self-limiting single-nanowire assembly with dielectrophoresis." Nature nanotechnology 5.7 (2010): 525.
    [60] Presnova, Galina, et al. "Biosensor based on a silicon nanowire field-effect transistor functionalized by gold nanoparticles for the highly sensitive determination of prostate specific antigen." Biosensors and Bioelectronics 88 (2017): 283-289.
    [61] Silva, Bárbara VM, et al. "An ultrasensitive human cardiac troponin T graphene screen-printed electrode based on electropolymerized-molecularly imprinted conducting polymer." Biosensors and Bioelectronics 77 (2016): 978-985.
    [62] Kong, Jing, and Hongjie Dai. "Full and modulated chemical gating of individual carbon nanotubes by organic amine compounds." The Journal of Physical Chemistry B 105.15 (2001): 2890-2893.
    [63] Shariati, Mohsen. "The field effect transistor DNA biosensor based on ITO nanowires in label-free hepatitis B virus detecting compatible with CMOS technology." Biosensors and Bioelectronics 105 (2018): 58-64.
    [64] Yang, Zhi, et al. "Dielectrophoretic-assembled single and parallel-aligned Ag nanowire–ZnO-branched nanorod heteronanowire ultraviolet photodetectors." ACS applied materials & interfaces 9.27 (2017): 22837-22845.
    [65] Ahmad, Mashkoor, et al. "Development of silver nanowires based highly sensitive amperometric glucose biosensor." Electroanalysis 27.6 (2015): 1498-1506.
    [66] Ali, Shawkat, et al. "Disposable all-printed electronic biosensor for instantaneous detection and classification of pathogens." Scientific reports 8.1 (2018): 5920.
    [67] Liu, Ping, et al. "Electrochemical sensor for the determination of brucine in human serum based on molecularly imprinted poly-o-phenylenediamine/SWNTs composite film." Sensors and Actuators B: Chemical 163.1 (2012): 84-89.
    [68] Cho, Chae Hwan, et al. "An affinity peptide-incorporated electrochemical biosensor for the detection of neutrophil gelatinase-associated lipocalin." Biosensors and Bioelectronics 142 (2019): 111482.
    [69] Kurowska, E., et al. "Silver nanowire array sensor for sensitive and rapid detection of H2O2." Electrochimica Acta 104 (2013): 439-447.

    QR CODE