研究生: |
楊敬亭 Yang, Ching-Ting |
---|---|
論文名稱: |
多壁奈米碳管/水泥複合材料之電磁屏蔽與熱傳導性質研究 Electromagnetic interference shielding effectiveness and thermal conductivity of carbon nanotube/cement composites |
指導教授: |
徐文光
Hsu, Wen-Kuang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 49 |
中文關鍵詞: | 水泥 、奈米碳管 、電磁波屏蔽 、熱傳導係數 |
外文關鍵詞: | cement, carbon nanotube, Electromagnetic interference shielding, thermal conductivity |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究將酸化處理的多壁奈米碳管與水泥以超音波震盪與機械式拌合製成奈米碳管/水泥複合材料,發現添加1wt%以上的碳管能夠提升奈米碳管/水泥複合材的電磁波屏壁效能,但亦發現過多的碳管添加會產生聚集並使熱傳導係數與抗壓強度下降。
In this study, shielding of electromagnetic interference by composites made from multi-walled carbon nanotubes and cement is tested at radiofrequency and improved shielding effectiveness is realized at the expense of decrease in compressive strength and thermal conductivity.
1. Aspdin, J., An Improvement in the Modes of Producing an Artificial Stone. 1824: British.
2. Aïtcin, P.-C., Cements of yesterday and today: Concrete of tomorrow. Cement and Concrete Research, 2000. 30(9): p. 1349-1359.
3. ASTM, Standard Specification for Portland Cement. 2009.
4. Richardson, I.G. and G.W. Groves, Microstructure and Microanalysis of Hardened Ordinary Portland-Cement Pastes. Journal of Materials Science, 1993. 28(1): p. 265-277.
5. 沈永年、王和源, 混凝土技術. 2004, 臺北市: 全華.
6. Taylor, H.F.W., Cement chemistry. 2nd ed. ed. 1997, London: T. Telford.
7. 黃兆龍, 混凝土性質與行為. 1997, 台北: 詹氏書局.
8. Fu, X. and D.D.L. Chung, Effects of silica fume, latex, methylcellulose, and carbon fibers on the thermal conductivity and specific heat of cement paste. Cement and Concrete Research, 1997. 27(12): p. 1799-1804.
9. Kim, K.H., et al., An experimental study on thermal conductivity of concrete. Cement and Concrete Research, 2003. 33(3): p. 363-371.
10. Iijima, S., Helical Microtubules of Graphitic Carbon. Nature, 1991. 354(6348): p. 56-58.
11. Berber, S., Y.K. Kwon, and D. Tomanek, Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters, 2000. 84(20): p. 4613-4616.
12. Thostenson, E.T., Z.F. Ren, and T.W. Chou, Advances in the science and technology of carbon nanotubes and their composites: a review. Composites Science and Technology, 2001. 61(13): p. 1899-1912.
13. Dresselhaus, M.S. and P.C. Eklund, Phonons in carbon nanotubes. Advances in Physics, 2000. 49(6): p. 705-814.
14. Hassanien, A., et al., Geometrical structure and electronic properties of atomically resolved multiwall carbon nanotubes. Applied Physics Letters, 1999. 75(18): p. 2755-2757.
15. Lambin, P., Electronic structure of carbon nanotubes. Comptes Rendus Physique, 2003. 4(9): p. 1009-1019.
16. Kim, P., et al., Thermal transport measurements of individual multiwalled nanotubes. Physical Review Letters, 2001. 8721(21): p. -.
17. Mingo, N. and D.A. Broido, Carbon nanotube ballistic thermal conductance and its limits. Physical Review Letters, 2005. 95(9): p. -.
18. Lourie, O., D.M. Cox, and H.D. Wagner, Buckling and collapse of embedded carbon nanotubes. Physical Review Letters, 1998. 81(8): p. 1638-1641.
19. Yu, M.F., T. Kowalewski, and R.S. Ruoff, Structural analysis of collapsed, and twisted and collapsed, multiwalled carbon nanotubes by atomic force microscopy. Physical Review Letters, 2001. 86(1): p. 87-90.
20. Yu, M.F., et al., Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 2000. 287(5453): p. 637-640.
21. Treacy, M.M.J., T.W. Ebbesen, and J.M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature, 1996. 381(6584): p. 678-680.
22. Wong, E.W., P.E. Sheehan, and C.M. Lieber, Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science, 1997. 277(5334): p. 1971-1975.
23. Makar JM, B.J., Carbon nanotubes and their application in the construction industry Proceedings of 1st International Symposium on Nanotechnology in Construction, 2003: p. 331-341.
24. Li, G.Y., P.M. Wang, and X.H. Zhao, Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes. Carbon, 2005. 43(6): p. 1239-1245.
25. de Ibarra, Y.S., et al., Atomic force microscopy and nanoindentation of cement pastes with nanotube dispersions. Physica Status Solidi a-Applications and Materials Science, 2006. 203(6): p. 1076-1081.
26. Wansom, S., et al., AC-impedance response of multi-walled carbon nanotube/cement composites. Cement & Concrete Composites, 2006. 28(6): p. 509-519.
27. Li, G.Y., P.M. Wang, and X.H. Zhao, Pressure-sensitive properties and microstructure of carbon nanotube reinforced cement composites. Cement & Concrete Composites, 2007. 29(5): p. 377-382.
28. Han, B.G., X. Yu, and E. Kwon, A self-sensing carbon nanotube/cement composite for traffic monitoring. Nanotechnology, 2009. 20(44): p. -.
29. Xun Yu, E.K., A carbon nanotube/cement composite with piezoresistive properties. SMART MATERIALS AND STRUCTURES, 2009. 18.
30. 罗健林, 段., 巴基管水泥复合材料的I-V特性及力学强度. 武汉工程大学学报, 2009. 31(1).
31. 罗健林, 段., 李惠, 纳米级硅灰及碳管对水泥基材料减振性能的影响. 材料工程, 2009. 2009(4).
32. Chan, L.Y. and B. Andrawes, Finite element analysis of carbon nanotube/cement composite with degraded bond strength. Computational Materials Science, 2010. 47(4): p. 994-1004.
33. Konsta-Gdoutos, M.S., Z.S. Metaxa, and S.P. Shah, Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cement & Concrete Composites, 2010. 32(2): p. 110-115.
34. 孫德霖, 多壁奈米碳管/水泥複合材料之合成與物理性質研究, in 材料科學與工程研究所. 2010, 國立清華大學: 新竹.
35. Park, H.J., et al., The effect of pre-treatment methods on morphology and size distribution of multi-walled carbon nanotubes. Nanotechnology, 2008. 19(33): p. -.
36. UNFCCC, Kyoto Protocol to the United Nations Framework Convention on Climate Change. 1997.
37. 刘顺华, 刘., 董星龙, 电磁波屏蔽及吸波材料. 2007: 化学工业出版社.
38. 世界衛生組織於2010年5月表示,目前相關研究並無法證實行動電話使用與腦瘤之關係。但因行動電話使用者年齡下降與使用時間增加,必須要投入更多的研究來補足此一領域之知識空缺。.
39. 通訊元件教學推動中心, 電磁相容理論與實務. 2007, 臺北市.
40. Sahoo, N.G., et al., Improvement of mechanical and thermal properties of carbon nanotube composites through nanotube functionalization and processing methods. Materials Chemistry and Physics, 2009. 117(1): p. 313-320.
41. Hsu, C.-T., Phonon and adsorption properties of aggregated carbon nanotubes and novel productions for tubular graphite and individual graphenes, in Material science and engineering. 2008, National TsingHua University: HsinChu.
42. 內政部營建署, 建築技術規則 -建築設計施工編-第二章 第八節.
43. 前述所引用之規範使新型態的建築(如薄膜式遮頂)無法發展,因此在民國九十三年三月十日已第八節第四十五條刪除,但我們還是可以知道一般建築物的熱傳透是不宜過高的。.
44. Watts, P.C.P., et al., High permittivity from defective multiwalled carbon nanotubes in the X-band. Advanced Materials, 2003. 15(7-8): p. 600-603.
45. Mc Carthy, B., et al., Spectroscopic investigation of conjugated polymer/single-walled carbon nanotube interactions. Chemical Physics Letters, 2001. 350(1-2): p. 27-32.
46. Watts, P.C.P. and W.K. Hsu, Verification of electromagnetic induction from Fe-filled carbon nanotubes. Applied Physics a-Materials Science & Processing, 2004. 78(1): p. 79-83.
47. Zhongdong Duan, J.L. Effect of multi-walled carbon nanotubes on the vibration-reduction behavior of cement. in International Conference on Smart Materials and Nanotechnology in Engineering. 2007.
48. Sanchez, F. and C. Ince, Microstructure and macroscopic properties of hybrid carbon nanofiber/silica fume cement composites. Composites Science and Technology, 2009. 69(7-8): p. 1310-1318.
49. Joachim Roesler, H.H., Martin Baeker, Mechanical Behaviour of Engineering Materials. 2007: Springer.
50. Coleman, J.N., U. Khan, and Y.K. Gun'ko, Mechanical reinforcement of polymers using carbon nanotubes. Advanced Materials, 2006. 18(6): p. 689-706.