簡易檢索 / 詳目顯示

研究生: 黃振傑
論文名稱: 被動式水膠時序微動閥門應用於生醫免疫反應晶片之設計與製造
Design and Fabrication of Hydro-gel based Passive Micro Valve
指導教授: 曾繁根
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 奈米工程與微系統研究所
Institute of NanoEngineering and MicroSystems
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 59
中文關鍵詞: 水膠被動閥門
外文關鍵詞: hydrogel, passive valve
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文設計了一個完全無外接動力之微流體控制被動閥門,在晶片完成後從進液、流體傳輸、流體停止與再動、以及出液各個流程皆依賴流道內部之物理潛能進行。流道本體是以 PDMS 對SU-8 母模翻模,再使PDMS 流道與玻片進行氧電漿接合製成,進行測試。根據楊氏方程式,流體在微流道中前進是因為表面張力帶動,若前進過程遭遇過大的流道角度改變便可因此停止,在此可應用為閥門關閉的功能。而流體的再動是藉特殊吸水高分子材料「水膠」其吸水後會大量膨漲的特性,為其設計旁支流道使其停留在閥門口附近,在主流道進液後在閥門口停留,並與水膠接觸,因而使其膨漲,得以推動 PDMS 側壁,破壞主流道流體的壓力平衡,使流體再度流動,完成閥門作動之流程。
    穩定作用之下的時序閥門,可將流體停留約 20~25 秒,然而將水膠混進不同比例之長鍊水膠之後,可進一步延至 30~35 秒,並且由於長鍊水膠的存在,可約束其膨脹量,另一方面減少水膠伸長造成流道堵塞的問題,改善閥門前後之流量差。以此被動時序閥門為基礎,未來可進階應用成多個閥門連接,以多重閥門的存在直接延長流體被停留的時間。又水膠膨脹量的巨大,可使用至不同方向的流體輸送,被動時序閥便可靈活應用在各種方向以及不同時間的流體控制。


    This paper designed a micro fluidic chip containing passive micro valve to control flows in micro channel stopping and continuing flowing after specific time. It depends only on the physical energy, which is surface tension, to activate this chip operate sample loading, flow transfer, and flow switch correctly without any input power. According to Young’s Equation, flows in micro channel will encounter a negative pressure barrier when liquid meniscus goes through an abruptly increase of side wall angle. After that, hydro-gel which was UV solidified in side channel absorbs water and swells into main channel, pushes valve and restarts flow going. The gating time from flow stopping to reflowing is about 15s for prototype.
    The micro channel is fabricated by PDMS modeling with SU-8 mold, and then bonding this micro channel to a glass slide after surface plasma treatment. First, fabricate different depth of channel to find out whether gating time can varied with it or not, then prepare several portions of hydro-gel with different concentration to obtain better gating time. The swelling and UV light solidified property of hydro-gels is mainly from short chain gels, therefore the existence of long chain gels will reduce the expansion, refines whole time gating efficiency, and reduce the flow rate drop resulting from over swelling of hydro-gel furthermore.

    一、緒論......................................................................................................1 1.1 前言.............................................................................................1 1.2 生醫實驗室晶片(Bio-Lab-on-a-chip).........................................2 1.2.1 主動式生醫晶片..............................................................2 1.2.2 被動式生醫晶片..............................................................4 1.3 水膠簡介.....................................................................................5 二、研究計畫............................................................................................8 2.1 被動式時間閥門(Time-Gate) ....................................................9 2.2 胰島素免疫檢測區在晶片上之整合................................10 2.3 微流道系統之製備............................................................11 三、文獻回顧..........................................................................................13 3.1 微動閥門(Micro-valve)之簡介.................................................13 3.2 無外加動力被動式閥門...........................................................18 3.3 水膠控制式閥門.......................................................................18 3.4 水膠結構製備...........................................................................22 3.5 被動式閥門之分析...................................................................25 3.6 被動式水膠微動閥門之研發...................................................27 四、理論公式...........................................................................................34 4.1 表面張力及表面能...................................................................34 4.2 楊─拉普拉斯公式 (Young–Laplace equation)........................37 4.3 被動式微動閥門分析...............................................................38 五、實驗架構...........................................................................................42 5.1材料選擇.....................................................................................42 5.2晶片母模製備.............................................................................42 5.3 PDMS 材料活化與流道翻模...................................................43 5.4 水膠定形...................................................................................43 六、實驗結果與討論..............................................................................43 6.1 PDMS 活化現象測試結果.......................................................43 6.2被動閥門之水膠推動結構設計.................................................45 6.3閥門實際致動測試結果…………............................................48 6.4 改變水膠成份再重覆閥門作動測試.......................................51 七、結論....................................................................................................55 八、未來工作...........................................................................................56 8.1 多重閥門之使用.......................................................................56 8.2 改變輸送方向之閥門使用.......................................................56 8.3 流體混合控制...........................................................................57 九、參考文獻...........................................................................................58

    1. Steigert, J., et al., Integrated Sample Preparation, Reaction, and Detection on a High-frequency Centrifugal Microfluidic Platform. Journal of the Association for Laboratory Automation, 2005. 10(5): p. 331-341.
    2. 陳明宏 and 曾繁根, 數位化微流體操縱技術, in 科學發展. 2006.
    3. Terry, S.C., J.H. Jerman, and J.B. Angell, A gas chromatographic air analyzer fabricated on a silicon wafer. Electron Devices, IEEE Transactions on, 1979. 26(12): p. 1880-1886.
    4. Zengerle, R. and T. Metz, Capillary Driven Systems, in Microfluidic Platforms. p. 42.
    5. Eddington, D.T. and D.J. Beebe, A valved responsive hydrogel microdispensing device with integrated pressure source. Microelectromechanical Systems, Journal of, 2004. 13(4): p. 586-593.
    6. Beebe, D.J., et al., Functional hydrogel structures for autonomous flow control inside microfluidic channels. Nature, 2000. 404(6778): p. 588-590.
    7. Liu, R.H., Y. Qing, and D.J. Beebe, Fabrication and characterization of hydrogel-based microvalves. Microelectromechanical Systems, Journal of, 2002. 11(1): p. 45-53.
    8. Ai Ping Zhu, Mary B. Chan-Park, and Jian Xia Gao, Foldable micropatterned hydrogel film made from biocompatible PCL-b-PEG-b-PCL diacrylate by UV embossing. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2006. 76B(1): p. 76-84.
    9. Liu, V.A. and S.N. Bhatia, Three-Dimensional Photopatterning of Hydrogels Containing Living Cells. Biomedical Microdevices, 2002. 4(4): p. 257-266.
    10. Man, P.F., et al. Microfabricated capillarity-driven stop valve and sample injector. in Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings., The Eleventh Annual International Workshop on. 1998.
    11. Chen, J.M., F.G. Tseng, and J.C. Chian, 被動式水膠時序控制微動閥門之設計與製造, in Department of Engineering and System Science. 2007, National Tsing-Hua University: Taiwan.
    12. Chen, Y.-T. and D. Lee, A bonding technique using hydrophilic SU-8. Journal of Micromechanics and Microengineering, 2007. 17: p. 1978-1984.
    13. Oh, K.W. and C.H. Ahn, A review of microvalves. Journal of Micromechanics and Microengineering, 2006. 16(5): p. R13-R39.
    14. Biosite, I. Protein Arrays. 2009; Available from: http://www.biosite.com/discovery/arrays.aspx.
    15. Tanaka, T., et al., Phase Transitions in Ionic Gels. Physical Review Letters, 1980. 45(20): p. 1636.
    16. Wang, J., et al., Self-Actuated, Thermo-Responsive Hydrogel Valves for Lab on a Chip. Biomedical Microdevices, 2005. 7(4): p. 313-322.
    17. Suzuki, A. and T. Tanaka, Phase transition in polymer gels induced by visible light. Nature, 1990. 346(6282): p. 345-347.
    18. Tanaka, T., et al., Collapse of Gels in an Electric Field. Science, 1982. 218(4571): p. 467-469.
    19. Kato, N., F. Takahashi, and S. Yamanobe, Property of magneto-driven poly (N-isopropylacrylamide) gel containing gamma-Fe2O3 in NaCl solution as a chemomechanical device. Materials Science and Engineering: C, 1997. 5: p. 141-147.
    20. Kataoka, K., et al., Totally Synthetic Polymer Gels Responding to External Glucose Concentration: Their Preparation and Application to On-off Regulation of Insulin Release. Journal of the American Chemical Society, 1998. 120(48): p. 12694-12695.
    21. Gemeinhart, R.A. and C.Q. Guo, Fast Swelling Hydrogel Systems, in Reflexive Polymers and Hydrogels. 2004. p. 245-253.
    22. Bae, B., et al., Feasibility test of an electromagnetically driven valve actuator for glaucoma treatment. Microelectromechanical Systems, Journal of, 2002. 11(4): p. 344-354.
    23. Teymoori, M.M. and E. Abbaspour-Sani, Design and simulation of a novel electrostatic peristaltic micromachined pump for drug delivery applications. Sensors and Actuators A: Physical, 2005. 117(2): p. 222-229.
    24. Li, H.Q., et al., Fabrication of a high frequency piezoelectric microvalve. Sensors and Actuators A: Physical, 2004. 111(1): p. 51-56.
    25. Khademhosseini, A., et al., Molded polyethylene glycol microstructures for capturing cells within microfluidic channels, Lab Chip, 2004. 4: p. 425-430.
    26. Chan-Park, M.B., et al., Fabrication of High Aspect Ratio Poly(ethylene glycol)-Containing Microstructures by UV Embossing. Langmuir, 2003. 19(10): p. 4371-4380.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE