研究生: |
楊庭琹 Yang, Ting-Ching |
---|---|
論文名稱: |
應用於低壓操作電阻式隨機存取記憶體之偏移補償感測電路 Low Voltage Offset-compensated Sensing Circuits for Contact Resistive Random Access Memory |
指導教授: |
張孟凡
Chang, Meng-Fan |
口試委員: |
洪浩喬
Hao-Chiao Hong 邱瀝毅 Lih-Yih Chiou |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2014 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 58 |
中文關鍵詞: | 感測放大器 、電阻式記憶體 |
外文關鍵詞: | sense amplifier, RRAM |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
攜帶式電子產品、智慧型車用電子和醫療電子等產品需要非揮發性記憶體做為儲存元件,而為了達到高效能的操作,微控制單元(MCU)的高速資料處理速度是必要的。目前傳統的內嵌式記憶體都使用快閃記憶體(Flash memory),然而快閃記憶體無法高速寫入因為需要按照一定順序操作並需要高電壓來寫入及抺除,再加上製程微縮至奈米等級以下,快閃記憶體在微縮上遇到了許多物理限制,因此新型態非揮發性記憶體的研究及發展是必需的。電阻式記憶體(RRAM)為公認相當具有潛力的新型態非揮發性記憶體之一,給予適當的寫入驅動電流,可以達到低寫入電壓、快速寫入、低功耗與等優點。
電阻式記憶體元件最常見的架構為一個電晶體加上一個電阻式記憶體單元(1T1R),適合用在需要快速讀取和低電壓供給的內嵌式裝置應用上。隨著製程的微縮,RRAM的阻值愈來愈高,且阻值的飄移量愈也來愈來愈大,造成高阻態和低阻態之間的高低電阻比(R-ratio)縮小。因此電阻式記憶體會面臨到以下的問題:感測邊限不足夠、讀取最低操作電壓受限制和高低電阻比縮小造成的讀取速度緩慢。
因此我們提出了偏移補償感測電路(Offset-compensated Sensing Amplifier)來加快讀取速度。藉由儲存感測放大器的臨界電壓(threshed voltage)來補償感測電路的偏差,因此能操作在更低的電壓上及有更快的讀取速度,其讀取速度可比傳統的電壓感測電路快1.78倍左右,且可以補償感測放大器60%到80%的偏移量。
我們以65奈米製程實作256位元的接觸點電阻式隨機存取記憶體測試晶片,在操作電壓為1V及0.3V的情況下,量測讀取速度分別為6.233ns和349.9ns。
[1] S. Zhong, Z. Manhong, H. Zongliang, L. Shaobin, Y. Yun, Q. Shengfen, et al., "Effect of Damage in Source and Drain on the Endurance of a 65-nm-Node NOR Flash Memory," Electron Devices, IEEE Transactions on, vol. 60, pp. 3989-3995, 2013.
[2] S. Shimizu, S. Shukuri, N. Ajika, T. Ogura, M. Mihara, Y. Kawajiri, et al., "A True 6F2 NOR Flash Memory Cell Technology - Impact of Floating Gate B4-Flash on NOR Scaling," in Memory Workshop (IMW), 2011 3rd IEEE International, 2011, pp. 1-2.
[3] W. Xueqiang, W. Dong, P. Liyang, Z. Runde, and H. Chaohong, "An on-chip high-speed 4-bit BCH decoder in MLC NOR flash memories," in Solid-State Circuits Conference, 2009. A-SSCC 2009. IEEE Asian, 2009, pp. 229-232.
[4] S. Shukuri, N. Ajika, M. Mihara, K. Kobayashi, T. Endoh, and M. Nakashima, "A 60nm NOR Flash Memory Cell Technology Utilizing Back Bias Assisted Band-to-Band Tunneling Induced Hot-Electron Injection (B4-Flash)," in VLSI Technology, 2006. Digest of Technical Papers. 2006 Symposium on, 2006, pp. 15-16.
[5] C. Villa, D. Vimercati, S. Schippers, E. Confalonieri, M. Sforzin, S. Polizzi, et al., "A 125 MHz burst-mode flexible read-while-write 256 Mbit 2b/c 1.8V NOR flash memory," in Solid-State Circuits Conference, 2005. Digest of Technical Papers. ISSCC. 2005 IEEE International, 2005, pp. 52-584 Vol. 1.
[6] P. Ki-Tae, H. Jin-man, K. Daehan, N. Sangwan, C. Kihwan, K. Min-Su, et al., "19.5 Three-dimensional 128Gb MLC vertical NAND Flash-memory with 24-WL stacked layers and 50MB/s high-speed programming," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International, 2014, pp. 334-335.
[7] L. Seokkiu, "Scaling Challenges in NAND Flash Device toward 10nm Technology," in Memory Workshop (IMW), 2012 4th IEEE International, 2012, pp. 1-4.
[8] J. Myoungsoo, E. H. Wilson, D. Donofrio, J. Shalf, and M. T. Kandemir, "NANDFlashSim: Intrinsic latency variation aware NAND flash memory system modeling and simulation at microarchitecture level," in Mass Storage Systems and Technologies (MSST), 2012 IEEE 28th Symposium on, 2012, pp. 1-12.
[9] W. SungJin, L. KiHong, S. DaeGyu, K. BeomYong, K. MinSoo, B. JinHo, et al., "Novel 3-dimensional Dual Control-gate with Surrounding Floating-gate (DC-SF) NAND flash cell for 1Tb file storage application," in Electron Devices Meeting (IEDM), 2010 IEEE International, 2010, pp. 29.7.1-29.7.4.
[10] L. Choong-Ho, S. Suk-Kang, J. Donghoon, L. Sehoon, C. Seungwook, K. Jonghyuk, et al., "A highly manufacturable integration technology for 27nm 2 and 3bit/cell NAND flash memory," in Electron Devices Meeting (IEDM), 2010 IEEE International, 2010, pp. 5.1.1-5.1.4.
[11] K. Prall, "Scaling Non-Volatile Memory Below 30nm," in Non-Volatile Semiconductor Memory Workshop, 2007 22nd IEEE, 2007, pp. 5-10.
[12] P. Youngwoo, L. Jaeduk, C. Seong Soon, J. Gyoyoung, and J. Eunseung, "Scaling and reliability of NAND flash devices," in Reliability Physics Symposium, 2014 IEEE International, 2014, pp. 2E.1.1-2E.1.4.
[13] K. Yohwan, "NAND Flash Scaling Beyond 20nm," in Memory Workshop, 2009. IMW '09. IEEE International, 2009, pp. 1-3.
[14] C. Gerardi, G. Molas, G. Albini, E. Tripiciano, M. Gely, A. Emmi, et al., "Performance and reliability of a 4Mb Si nanocrystal NOR Flash memory with optimized 1T memory cells," in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4.
[15] J. Javanifard, T. Tanadi, H. Giduturi, K. Loe, R. L. Melcher, S. Khabiri, et al., "A 45nm Self-Aligned-Contact Process 1Gb NOR Flash with 5MB/s Program Speed," in Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International, 2008, pp. 424-624.
[16] R. Cernea, P. Long, F. Moogat, C. Siu, L. Binh, L. Yan, et al., "A 34MB/s-Program-Throughput 16Gb MLC NAND with All-Bitline Architecture in 56nm," in Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International, 2008, pp. 420-624.
[17] L. Hang-Ting, H. Tzu-Hsuan, H. Yi-Hsuan, S. P. Hong, M. T. Wu, F. H. Hsu, et al., "A highly scalable 8-layer 3D vertical-gate (VG) TFT NAND Flash using junction-free buried channel BE-SONOS device," in VLSI Technology (VLSIT), 2010 Symposium on, 2010, pp. 131-132.
[18] T. Ogura, M. Mihara, Y. Kawajiri, K. Kobayashi, T. Sakaniwa, K. Nishikawa, et al., "A fast rewritable 90nm 512Mb NOR Flash; memory with 8F2 cell size," in VLSI Circuits (VLSIC), 2011 Symposium on, 2011, pp. 198-199.
[19] S. K. Lai, "Floating gate memories: Moore's law continues," in VLSI Technology, 2005. (VLSI-TSA-Tech). 2005 IEEE VLSI-TSA International Symposium on, 2005, pp. 74-77.
[20] S. Sang-Pil, K. Kwang Soo, L. Heon Kyu, H. Jung-In, K. Wook-Hyun, H. Jee Hoon, et al., "Fully 3-Dimensional NOR Flash Cell with Recessed Channel and Cylindrical Floating Gate - A Scaling Direction for 65nm and Beyond," in VLSI Technology, 2006. Digest of Technical Papers. 2006 Symposium on, 2006, pp. 17-18.
[21] S. Yunseung, "Non-volatile memory technologies for beyond 2010," in VLSI Circuits, 2005. Digest of Technical Papers. 2005 Symposium on, 2005, pp. 156-159.
[22] F. Irom, D. N. Nguyen, G. R. Allen, and S. A. Zajac, "Scaling Effects in Highly Scaled Commercial Nonvolatile Flash Memories," in Radiation Effects Data Workshop (REDW), 2012 IEEE, 2012, pp. 1-6.
[23] e. a. J.-P. Colinge, Physics of Semiconductor Devices: Kluwer Academic Publishers, 2002.
[24] M. Jefremow, T. Kern, W. Allers, C. Peters, J. Otterstedt, O. Bahlous, et al., "Time-differential sense amplifier for sub-80mV bitline voltage embedded STT-MRAM in 40nm CMOS," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International, 2013, pp. 216-217.
[25] Y. Hung-Chang, L. Kai-Chun, L. Ku-Feng, H. Chin-Yi, C. Yu-Der, O. Tong-Chern, et al., "Cycling endurance optimization scheme for 1Mb STT-MRAM in 40nm technology," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International, 2013, pp. 224-225.
[26] D. Halupka, S. Huda, W. Song, A. Sheikholeslami, K. Tsunoda, C. Yoshida, et al., "Negative-resistance read and write schemes for STT-MRAM in 0.13µm CMOS," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International, 2010, pp. 256-257.
[27] H. Yoda, S. Fujita, N. Shimomura, E. Kitagawa, K. Abe, K. Nomura, et al., "Progress of STT-MRAM technology and the effect on normally-off computing systems," in Electron Devices Meeting (IEDM), 2012 IEEE International, 2012, pp. 11.3.1-11.3.4.
[28] S. C. Oh, J. H. Jeong, W. C. Lim, W. J. Kim, Y. H. Kim, H. J. Shin, et al., "On-axis scheme and novel MTJ structure for sub-30nm Gb density STT-MRAM," in Electron Devices Meeting (IEDM), 2010 IEEE International, 2010, pp. 12.6.1-12.6.4.
[29] G. De Sandre, L. Bettini, A. Pirola, L. Marmonier, M. Pasotti, M. Borghi, et al., "A 90nm 4Mb embedded phase-change memory with 1.2V 12ns read access time and 1MB/s write throughput," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International, 2010, pp. 268-269.
[30] F. Bedeschi, R. Fackenthal, C. Resta, E. M. Donze, M. Jagasivamani, E. Buda, et al., "A Multi-Level-Cell Bipolar-Selected Phase-Change Memory," in Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers. IEEE International, 2008, pp. 428-625.
[31] L. Kwang-Jin, C. Beak-Hyung, C. Woo-Yeong, K. Sangbeom, C. Byung-Gil, O. Hyung-Rok, et al., "A 90nm 1.8V 512Mb Diode-Switch PRAM with 266MB/s Read Throughput," in Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE International, 2007, pp. 472-616.
[32] G. Servalli, "A 45nm generation Phase Change Memory technology," in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4.
[33] T. Morikawa, K. Akita, T. Ohyanagi, M. Kitamura, M. Kinoshita, M. Tai, et al., "A low power phase change memory using low thermal conductive doped-Ge2Sb2Te 5 with nano-crystalline structure," in Electron Devices Meeting (IEDM), 2012 IEEE International, 2012, pp. 31.4.1-31.4.4.
[34] J. Y. Wu, M. Breitwisch, S. Kim, T. H. Hsu, R. Cheek, P. Y. Du, et al., "A low power phase change memory using thermally confined TaN/TiN bottom electrode," in Electron Devices Meeting (IEDM), 2011 IEEE International, 2011, pp. 3.2.1-3.2.4.
[35] H. Y. Cheng, T. H. Hsu, S. Raoux, J. Y. Wu, P. Y. Du, M. Breitwisch, et al., "A high performance phase change memory with fast switching speed and high temperature retention by engineering the GexSbyTez phase change material," in Electron Devices Meeting (IEDM), 2011 IEEE International, 2011, pp. 3.4.1-3.4.4.
[36] X. Wei and Z. Tong, "A Time-Aware Fault Tolerance Scheme to Improve Reliability of Multilevel Phase-Change Memory in the Presence of Significant Resistance Drift," Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 19, pp. 1357-1367, 2011.
[37] D. Takashima, Y. Nagadomi, and T. Ozaki, "A 100MHz ladder FeRAM design with capacitance-coupled-bitline (CCB) cell," in VLSI Circuits (VLSIC), 2010 IEEE Symposium on, 2010, pp. 227-228.
[38] H. Shiga, D. Takashima, S. Shiratake, K. Hoya, T. Miyakawa, R. Ogiwara, et al., "A 1.6GB/s DDR2 128Mb chain FeRAM with scalable octal bitline and sensing schemes," in Solid-State Circuits Conference - Digest of Technical Papers, 2009. ISSCC 2009. IEEE International, 2009, pp. 464-465,465a.
[39] M. Qazi, M. Clinton, S. Bartling, and A. P. Chandrakasan, "A low-voltage 1Mb FeRAM in 0.13um CMOS featuring time-to-digital sensing for expanded operating margin in scaled CMOS," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International, 2011, pp. 208-210.
[40] D. Takashima, H. Shiga, D. Hashimoto, T. Miyakawa, S. Shiratake, K. Hoya, et al., "A scalable shield-bitline-overdrive technique for 1.3V Chain FeRAM," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International, 2010, pp. 262-263.
[41] H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, et al., "Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM," in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4.
[42] R. Meyer, L. Schloss, J. Brewer, R. Lambertson, W. Kinney, J. Sanchez, et al., "Oxide dual-layer memory element for scalable non-volatile cross-point memory technology," in Non-Volatile Memory Technology Symposium, 2008. NVMTS 2008. 9th Annual, 2008, pp. 1-5.
[43] Y. S. Chen, H. Y. Lee, P. S. Chen, P. Y. Gu, C. W. Chen, W. P. Lin, et al., "Highly scalable hafnium oxide memory with improvements of resistive distribution and read disturb immunity," in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4.
[44] S. Shyh-Shyuan, C. Pei-Chia, L. Wen-Pin, L. Heng-Yuan, C. Pang-Shiu, C. Yu-Sheng, et al., "A 5ns fast write multi-level non-volatile 1 K bits RRAM memory with advance write scheme," in VLSI Circuits, 2009 Symposium on, 2009, pp. 82-83.
[45] C. H. Cheng, A. Chin, and F. S. Yeh, "Novel Ultra-low power RRAM with good endurance and retention," in VLSI Technology (VLSIT), 2010 Symposium on, 2010, pp. 85-86.
[46] S. Shyh-Shyuan, M.-F. Chang, L. Ku-Feng, W. Che-Wei, C. Yu-Sheng, C. Pi-Feng, et al., "A 4Mb embedded SLC resistive-RAM macro with 7.2ns read-write random-access time and 160ns MLC-access capability," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International, 2011, pp. 200-202.
[47] W. Otsuka, K. Miyata, M. Kitagawa, K. Tsutsui, T. Tsushima, H. Yoshihara, et al., "A 4Mb conductive-bridge resistive memory with 2.3GB/s read-throughput and 216MB/s program-throughput," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International, 2011, pp. 210-211.
[48] C. Meng-Fan, W. Che-Wei, K. Chia-Cheng, S. Shin-Jang, L. Ku-Feng, Y. Shu-Meng, et al., "A 0.5V 4Mb logic-process compatible embedded resistive RAM (ReRAM) in 65nm CMOS using low-voltage current-mode sensing scheme with 45ns random read time," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2012 IEEE International, 2012, pp. 434-436.
[49] L. Tz-yi, Y. Tian Hong, R. Scheuerlein, C. Yingchang, J. K. Lee, G. Balakrishnan, et al., "A 130.7mm2 2-layer 32Gb ReRAM memory device in 24nm technology," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International, 2013, pp. 210-211.
[50] A. Kawahara, K. Kawai, Y. Ikeda, Y. Katoh, R. Azuma, Y. Yoshimoto, et al., "Filament scaling forming technique and level-verify-write scheme with endurance over 107 cycles in ReRAM," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2013 IEEE International, 2013, pp. 220-221.
[51] B. S. Kiyoo Itoh, "Adaptive circuits for the 0.5-V nanoscale CMOS era," in Solid-State Circuits Conference - Digest of Technical Papers, 2009. ISSCC 2009. IEEE International, 2009, pp. 14-20.
[52] Y.-H. Tseng, H. Chia-En, C. H. Kuo, Y. D. Chih, and L. Chrong-Jung, "High density and ultra small cell size of Contact ReRAM (CR-RAM) in 90nm CMOS logic technology and circuits," in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4.
[53] Smart Cars: a practical implementation of M2M communications is becoming a reality ever closer. http://www.libelium.com/es/smart_cars_m2m_accident_prevention/
[54] W3C Workshop on the Web of Things. Available: http://www.w3.org/2014/02/wot/
[55] C. Yu-Sheng, W. Tai-Yuan, T. Pei-Jer, C. Pang-Shiu, L. Heng-Yuan, L. Cha-Hsin, et al., "Forming-free HfO2 bipolar RRAM device with improved endurance and high speed operation," in VLSI Technology, Systems, and Applications, 2009. VLSI-TSA '09. International Symposium on, 2009, pp. 37-38.
[56] N. Xu, B. Gao, L. F. Liu, S. Bing, X. Y. Liu, R. Q. Han, et al., "A unified physical model of switching behavior in oxide-based RRAM," in VLSI Technology, 2008 Symposium on, 2008, pp. 100-101.
[57] W. Ching-Hua, T. Yi-Hung, L. Kai-Chun, C. Meng-Fan, K. Ya-Chin, L. Chrong-Jung, et al., "Three-dimensional 4F2 ReRAM cell with CMOS logic compatible process," in Electron Devices Meeting (IEDM), 2010 IEEE International, 2010, pp. 29.6.1-29.6.4.
[58] L. Myoung-Jae, P. Youngsoo, K. Bo-Soo, A. Seung-eon, L. Changbum, K. Kihwan, et al., "2-stack 1D-1R Cross-point Structure with Oxide Diodes as Switch Elements for High Density Resistance RAM Applications," in Electron Devices Meeting, 2007. IEDM 2007. IEEE International, 2007, pp. 771-774.
[59] L. Joonmyoung, S. Jungho, L. Daeseok, L. Wootae, J. Seungjae, J. Minseok, et al., "Diode-less nano-scale ZrOx/HfOx RRAM device with excellent switching uniformity and reliability for high-density cross-point memory applications," in Electron Devices Meeting (IEDM), 2010 IEEE International, 2010, pp. 19.5.1-19.5.4.
[60] B. Gao, S. Yu, N. Xu, L. F. Liu, B. Sun, X. Y. Liu, et al., "Oxide-based RRAM switching mechanism: A new ion-transport-recombination model," in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4.
[61] C. J. Chevallier, S. Chang Hua, S. F. Lim, S. R. Namala, M. Matsuoka, B. L. Bateman, et al., "A 0.13um 64Mb multi-layered conductive metal-oxide memory," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2010 IEEE International, 2010, pp. 260-261.
[62] K. Aratani, K. Ohba, T. Mizuguchi, S. Yasuda, T. Shiimoto, T. Tsushima, et al., "A Novel Resistance Memory with High Scalability and Nanosecond Switching," in Electron Devices Meeting, 2007. IEDM 2007. IEEE International, 2007, pp. 783-786.
[63] G. Bersuker, D. C. Gilmer, D. Veksler, J. Yum, H. Park, S. Lian, et al., "Metal oxide RRAM switching mechanism based on conductive filament microscopic properties," in Electron Devices Meeting (IEDM), 2010 IEEE International, 2010, pp. 19.6.1-19.6.4.
[64] C. Cagli, D. Ielmini, F. Nardi, and A. L. Lacaita, "Evidence for threshold switching in the set process of NiO-based RRAM and physical modeling for set, reset, retention and disturb prediction," in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4.
[65] K. Jinfeng, G. Bin, C. Bing, H. Peng, Z. Feifei, L. Lifeng, et al., "Physical mechanism of resistive switching and optimization design of cell in oxide-based RRAM," in Solid-State and Integrated Circuit Technology (ICSICT), 2012 IEEE 11th International Conference on, 2012, pp. 1-4.
[66] Y.-H. Tseng, S. Wen Chao, H. Chia-En, L. Chrong-Jung, and K. Ya-Chin, "Electron trapping effect on the switching behavior of contact RRAM devices through random telegraph noise analysis," in Electron Devices Meeting (IEDM), 2010 IEEE International, 2010, pp. 28.5.1-28.5.4.
[67] L. Byoungil and H. S. P. Wong, "NiO resistance change memory with a novel structure for 3D integration and improved confinement of conduction path," in VLSI Technology, 2009 Symposium on, 2009, pp. 28-29.
[68] Z. Wei, Y. Kanzawa, K. Arita, Y. Katoh, K. Kawai, S. Muraoka, et al., "Highly reliable TaOx ReRAM and direct evidence of redox reaction mechanism," in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4.
[69] M. Terai, M. Saitoh, T. Nagumo, Y. Sakotsubo, Y. Yabe, K. Takeda, et al., "High thermal robust ReRAM with a new method for suppressing read disturb," in VLSI Technology (VLSIT), 2011 Symposium on, 2011, pp. 50-51.
[70] K. Young-Bae, L. Seung Ryul, L. Dongsoo, L. Chang Bum, C. Man, H. Ji Hyun, et al., "Bi-layered RRAM with unlimited endurance and extremely uniform switching," in VLSI Technology (VLSIT), 2011 Symposium on, 2011, pp. 52-53.
[71] C. Hong-Yu, Y. Shimeng, G. Bin, H. Peng, K. Jinfeng, and H. S. P. Wong, "HfOx based vertical resistive random access memory for cost-effective 3D cross-point architecture without cell selector," in Electron Devices Meeting (IEDM), 2012 IEEE International, 2012, pp. 20.7.1-20.7.4.
[72] E. Morifuji, A. Oishi, K. Miyashita, S. Aota, M. Nishigori, H. Ootani, et al., "A 1.5 V high performance mixed signal integration with indium channel for 130 nm technology node," in Electron Devices Meeting, 2000. IEDM '00. Technical Digest. International, 2000, pp. 459-462.
[73] S. Chun-Hsing, C. Yi-Min, and L. Chenhsin, "Effect of insulated shallow extension for the improved short-channel effect of sub-100 nm MOSFET," in Semiconductor Device Research Symposium, 2003 International, 2003, pp. 158-159.
[74] S. Severi, K. G. Anil, K. Henson, A. Lauwers, A. Veloso, J. F. de Marneffe, et al., "Diffusion-less junctions and super halo profiles for PMOS transistors formed by SPER and FUSI gate in 45 nm physical gate length devices," in Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, 2004, pp. 99-102.
[75] M. Suetake, M. Miura-Mattausch, H. J. Mattausch, S. Kumashiro, N. Shigyo, S. Odanaka, et al., "Precise physical modeling of the reverse-short-channel effect for circuit simulation," in Simulation of Semiconductor Processes and Devices, 1999. SISPAD '99. 1999 International Conference on, 1999, pp. 207-210.
[76] T. Tsunomura, A. Nishida, and T. Hiramoto, "Effect of Channel Dopant Profile on Difference in Threshold Voltage Variability Between NFETs and PFETs," Electron Devices, IEEE Transactions on, vol. 58, pp. 364-369, 2011.
[77] B. Wicht, T. Nirschl, and D. Schmitt-Landsiedel, "Yield and speed optimization of a latch-type voltage sense amplifier," Solid-State Circuits, IEEE Journal of, vol. 39, pp. 1148-1158, 2004.
[78] M.-F. Chang, S. Shin-Jang, L. Chia-Chi, W. Che-Wei, L. Yu-Fan, W. Shang-Chi, et al., "An offset-tolerant current-sampling-based sense amplifier for Sub-100nA-cell-current nonvolatile memory," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2011 IEEE International, 2011, pp. 206-208.
[79] M.-F. Chang, W. Jui-Jen, C. Tun-Fei, L. Yen-Chen, Y. Ting-Chin, S. Wen-Chao, et al., "19.4 embedded 1Mb ReRAM in 28nm CMOS with 0.27-to-1V read using swing-sample-and-couple sense amplifier and self-boost-write-termination scheme," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International, 2014, pp. 332-333.
[80] B. Giridhar, N. Pinckney, D. Sylvester, and D. Blaauw, "13.7 A reconfigurable sense amplifier with auto-zero calibration and pre-amplification in 28nm CMOS," in Solid-State Circuits Conference Digest of Technical Papers (ISSCC), 2014 IEEE International, 2014, pp. 242-243.