簡易檢索 / 詳目顯示

研究生: 尤志豪
Chih-Hao Yu
論文名稱: 非晶矽與非晶矽鍺薄膜結晶化
Crystallization Behaviors of Amorphous Si and SiGe Thin Films
指導教授: 陳力俊
Lih-Juann Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 155
中文關鍵詞: 非晶矽薄膜非晶矽鍺薄膜鎳誘發結晶化臨場電子顯微鏡
外文關鍵詞: amorphous Si, amorphous SiGe, Ni-induced crystallization, in-situ TEM
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 複晶矽及複晶矽鍺薄膜相較於非晶矽薄膜具有較佳的特性,如較高的電性與開口率等,近年來一直被積極研究來應用於光電元件的薄膜電晶體材料上;其中以金屬來誘發非晶矽薄膜結晶化(Metal-induced crystallization)是一種常被用來製作複晶薄膜的方法。因此為了要更了解非晶矽與非晶矽鍺結晶化的行為,本論文中將探討以金屬誘發或以外加電流方式將非晶矽及非晶矽鍺薄膜結晶化的行為,及以臨場電子顯微鏡(In-situ TEM)觀察金屬誘發非晶矽鍺薄膜結晶化過程。
    首先,我們結合金屬誘發及電流誘發的方式得到一快速且具方向性的結晶方法,將非晶矽薄膜結晶化。此實驗已成功的在室溫下將厚度100 nm、長140 □m且寬10 □m經過BF2+離子佈值的非晶矽通道(channel)於0.2秒內完全轉變成複晶矽,並由實驗中觀察得知,此複晶矽的成長具有一優選方向,皆是由正極往負極方向成長,而由TEM影像中可發現所生成的複晶矽薄膜中具有平行通道方向長條狀晶粒且,此晶粒分佈的型態有助於電子遷移率的提升,另外因為通道中心跟邊緣區域散熱速度的不同會造成不同晶粒大小的分佈;於較高的外加限壓時(60 V),可於複晶矽薄膜中觀察到一長為3 □m寬為50 nm的結晶矽晶粒(長寬比為60),此結果顯示複晶矽晶粒的分佈型態會受到散熱速度與外加限壓所影響;另一方面,以不同的離子佈值於非晶矽薄膜中發現,不同的離子佈值存在並不會影響複晶矽成長的方向,其方向性的成長主要是由於正電鎳離子效應所造成。因此本實驗主要是由於外加高密度電流時所產的焦耳熱、強電場效應及鎳金屬誘發非結晶矽結晶化所引起,並成功的避免習知複晶矽薄膜須經高溫及長時間退火處理所產生的熱效應等問題。
    另一方面,由於複晶矽鍺薄膜較複晶矽薄膜具有更高的載子移動率,以及較低的結晶溫度,所以比複晶矽薄膜更適用於製作低溫複晶薄膜(a-Si1-xGex, X= 0.3, 0.2)電晶體上。故我們以快速退火方法對不同成分比例的非晶矽鍺薄膜熱處理,並經由GIXRD、Raman、AES以及TEM等分析工具,藉以瞭解鎳金屬誘發非晶矽鍺薄膜結晶化之行為。由研究結果可得知:在較低的退火溫度下,鎳金屬會先與非晶矽鍺薄膜反應形成 Ni germanosilicides,其組成是由鎳、矽及鍺所組成的三元合金;在較高的退火溫度時,在複晶矽鍺薄膜與二氧化矽的界面會發現個別島狀型態的晶粒生成,這些個別島狀晶粒是由矽、鎳以及少量的鍺所組成的三元合金化合物,主要因為在高溫下,鎳傾向與矽反應增劇,所以會造成鍺的大量往外擴散;同時實驗中發現當鎳金屬存在時,非晶Si0.7Ge0.3與非晶Si0.8Ge0.2的結晶溫度分別會由500 ℃與600 ℃降至400 ℃與500 ℃,故以鎳金屬誘發非晶矽鍺薄膜結晶,可降低非晶矽鍺薄膜結晶化溫度約100 ℃,有助於低溫複晶薄膜電晶體製作。
    最後,為了臨場(in-situ)觀察以silicide-forming及eutectic-formig兩種不同方式誘發非晶矽鍺薄膜結晶化的行為,所以我們以臨場的電子顯微鏡觀察以鎳與金兩種金屬誘發非晶Si0.8Ge0.2薄膜結晶化之行為。實驗時將試片放置於JEOL 2000V UHV-TEM中(base pressure 3 x 10-10 Torr),所使用的可加熱試片座是具可雙向傾斜的,且其加熱方式是以電流通過矽基材方式來加熱。在以鎳誘發再結晶方面,在較低的退火溫度下Ni(Si1-yGey)2 析出物會先形成,隨著退火溫度或退火時間的增加,然後它會開始在非晶Si0.8Ge0.2薄膜中以直線方式移動,且其所經過的區域會生成結晶矽鍺,所以非晶Si0.8Ge0.2薄膜經由鎳金屬誘發後可發現needle-like狀的結晶區域;實驗中並發現其結晶方向在結晶化過程中會改變,改變的方向會平行於原先的成長方向,同時此時可發現Ni(Si1-yGey)2 析出物會沿著已結晶化與非晶區域的界面移動,此結晶化方式與以鎳誘發非晶矽薄膜結晶化後所得到的branching needle-like結構不同,原因可能是由於鍺存在所造成。另外,以金誘發再結晶方面,當退火溫度高於金與非晶矽鍺薄膜的共晶溫度時,在非晶Si0.8Ge0.2薄膜表面上的Au clusters會開始與非晶Si0.8Ge0.2薄膜反應熔融型成液態合金,隨著退火溫度或退火時間的持續增加,然後開始於非晶Si0.8Ge0.2中移動並使非晶矽鍺薄膜開始結晶化,最後由TEM分析中可發現150 nm厚的非晶矽鍺薄膜完全結晶化。本實驗已成功的利用臨場電子顯微鏡於500 ℃下以鎳與金誘發非晶Si0.8Ge0.2薄膜結晶化的過程。


    Polycrystalline Silicon (poly-Si) and polycrystalline silicon-germanium (poly-SiGe) thin films are of interest as the basic channel materials in high performance thin film transistors for optoelectronic devices. Metal-induced crystallization of amorphous thin films is a useful method to fabricate the high performance polycrystalline thin films. In this dissertation research, the crystallization behaviors of a-Si and a-SiGe enhanced by the presence of metallic species or electric current are investigated.
    Ultrafast directional crystallization that combined the electric current stressing with metal-induced crystallization has been achieved for BF2+-implanted amorphous Si (a-Si) at room temperature. Polycrystalline Si was observed to grow from anode towards cathode and the channels of a-Si strips with a length of 140 □m and a width of 10 □m can be fully crystallized with a stressing time less than 0.2 s. The directional growth of crystalline Si nanowires, 50 nm in width and as long as 3 □m in length, with an extraordinarily high aspect ratio of 60, indicates a strong electric- field-induced effect on the growth. The uneven thermal distribution in the a-Si channels also caused the variation in grain size between the central and edge regions along A-A’ direction. On the other hand, the effects of electric field and doping species on directional crystallization of a-Si channels under high-density current stressing have been also investigated. The a-Si channels were implanted by 30 keV BF2+ or As+ to a dose of 3 x 1015 ions/cm2. A preferential growth of poly-Si from anode toward cathode was found on BF2+, As+ and un-implanted a-Si samples. The results indicate that directional growth of poly-Si is caused by the strong electric field effect on positively charged Ni ions under high-density current stressing. In a word, the growth method provides a promising scheme to solve the problems caused by high-temperature and long-term annealing treatment for the applications of optoelectronic devices.
    Metal-induced crystallization of amorphous Si1-xGex (x = 0.2 and 0.3) thin films on SiO2 by rapid thermal annealing at 300-600 oC has been investigated. At low annealing temperature, Ni reacted with a-Si1-xGex films to form Ni germanosilicides including Ni, Si, and Ge atoms. The crystallization temperature of a-Si0.7Ge0.3 and a-Si0.8Ge0.2 was lowered from 500 to 400 oC and 600 to 500 oC, respectively, with capping Ni. The individual grains of Ni germanosilicide were observed to form at the poly-SiGe/SiO2 interface in the annealed Ni/a-Si0.7Ge0.3 and Ni/a-Si0.8Ge0.2 samples after annealing at 500 oC. The formation of individual structure containing a small amount of Ge at the bottom of polycrystalline Si1-xGex films is attributed to the preferential reactions of Ni with Si to Ge.
    In-situ observation of the morphological changes of the metals (including the silicide-forming metal and eutectic-forming metal) induced crystallization of a-Si0.8Ge0.2 films have been carried out. The crystallization of a-Si0.8Ge0.2 thin films induced by Ni and Au was observed by the in-situ transmission electron microscope. For the Ni-induced crystallization, NiSi2 precipitate was first formed then migrated along a straight line in a-Si0.8Ge0.2. The crystallization of a-Si0.8Ge0.2 was achieved along the path of NiSi2 migration. The needle-like crystal regions were obtained after Ni-induced crystallization of a-Si0.8Ge0.2. The change of the growth direction of the needle-like crystallites was also observed. The direction is parallel but opposite to the original growth direction. It appeared that the NiSi2 precipitates migrated along the interface of the crystallized and amorphous regions. The results were different from the branching needle-like structure for Ni-induced crystallization of a-Si and may be caused by the presence of Ge atoms. On the other hand, for the Au-induced crystallization, Au clusters was first melted above the eutectic temperature of the Au and a-Si0.8Ge0.2. Then, the Au alloys migrated on the a-Si0.8Ge0.2 to initiate the crystallization and the fully crystallized a-Si0.8Ge0.2 films were observed. The crystallization of the 150 nm-thick a-Si0.8Ge0.2 films can be enhanced by Ni and Au metals below 500 oC.

    Contents Contents I Acknowledgments V Abstract VI List of Abbreviations and Acronyms VIII Chapter 1. An Overview of Thin Film Transistors 1.1 Amorphous Silicon Thin Film Transistors 2 1.2 Polycrystalline Silicon Thin Film Transistors 3 1.3 Polycrystalline Silicon Germanium Thin Film Transistors 5 1.4 Organic Thin Film Transistors 6 Chapter 2. Low Temperature Polycrystalline Silicon Thin Film Transistors 2.1 Solid Phase Crystallization 9 2.2 Excimer Laser Crystallization 10 2.3 Metal-induced Crystallization and Metal-induced-lateral Crystallization 12 2.4 Electric-field-aided Lateral Crystallization and Joule Heating Crystallization 14 Chapter 3. An Overview of Metal Silicide 3.1 Applications of Metal Silicides 16 3.2 Theories of Silicide Formation 17 3.3 Ni/Si System 25 3.4 Ni/Ge System 27 3.5 Ni/SiGe System 28 Chapter 4. Experimental Procedures 4.1 Sample Preparation 30 4.2 Initial Wafer Cleaning 30 4.3 Thin Metal Film Deposition 31 4.4 Rapid Thermal Annealing 31 4.5 Preparation of Samples for Transmission Electron Microscope Examination………………………………………………………32 4.5.1 Preparation of Planview Samples 32 4.5.2 Cross-sectional Specimen Preparation 33 4.5.3 Precision Cross-sectional Specimen Preparation 34 4.6 Transmission Electron Microscope Observation 35 4.7 Energy Dispersive Spectroscopy (EDS) Analysis 36 4.8 Composition-Depth Profiling Analysis by Auger Electron Spectroscopy……………………………………………….……..36 4.9 Glancing Incidence X-Ray Diffraction Analysis 37 4.10 Raman Analysis 37 4.11 I-V Measurements 37 4.12 Intra-Radiance (I-R) Scope Observation 38 Chapter 5. Directional Nickel Silicide-Induced Crystallization of Amorphous Silicon Channel under High-Density Current Stressing 5.1 Motivation 39 5.2 Experimental Procedures 40 5.3 Results and Discussion 41 5.3.1 Directional Growth of Polycrystalline Silicon 41 5.3.2 Phase Identification 42 5.3.3 Thermal Distribution and Grain Morphologies of Polycrystalline Silicon 43 5.3.4 Mechanism of Transformation of Amorphous Silicon to Polycrystalline Silicon 45 Chapter 6. Metal-Induced Crystallization of Amorphous Si1-xGex by Rapid Thermal Annealing 6.1 Motivation 48 6.2 Experimental Procedures 49 6.3 Results and Discussion 49 6.3.1 Ni/a-Si0.7Ge0.3 System 49 6.3.2 Ni/a-Si0.8Ge0.2 System 53 Chapter 7. In-Situ Observation of Metal-Induced Crystallization of Amorphous Si0.8Ge0.2 Thin Films 7.1 Motivation 57 7.2 Experimental Procedures 58 7.3 Results and Discussion 60 7.3.1 Ni Induced Crystallization of Amorphous Si0.8Ge0.2 60 7.3.2 Au Induced Crystallization of Amorphous Si0.8Ge0.2 62 7.3.3 NiSi2 Induced Crystallization of Amorphous Si 65 Chapter 8. Summary and Conclusions 8.1 Directional Nickel Silicide-Induced Crystallization of Amorphous Silicon Channel under High-Density Current Stressing 67 8.2 Metal-Induced Crystallization of Amorphous Si1-xGex by Rapid Thermal Annealing 68 8.3 In-Situ Observation of Metal-Induced Crystallization of Amorphous Si0.8Ge0.2 Thin Films 69 Chapter 9. Future Prospects 9.1 In-Situ Observation of Directional Ni-induced Crystallization of Amorphous Films 71 9.2 Fabrication of Devices and Analysis of Electrical Characterization…………………………………………………..71 9.3 In-Situ Observation of Metal-Induced Crystallization or Silicon Wires Induced Crystallization of a-Si or a-SiGe Thin Films 72 References 74 Tables 110 Figure Captions 111 Figures 117 Publication List 152

    References

    Chapter 1 References

    1. P. K Weimer, “The TFT-a new thin-film transistor,” Proc. Investigative Reporters and Editors (IRE), 50, 1462-1469 (1962).
    2. P. G. LeComber, W. E. Spear, and A. Ghaith, “Amorphous-silicon field effect devices and possible applications,” Electron. Lett. 15, 179-181 (1979).
    3. Y. Kuo, “A-Si:H TFT structures,” in Thin Film Transistors – Materials and Processes : Volume 1 Amorphous Silicon Thin Film Transistors, edited by Y. Kuo (Kluwer Academic Publisher, 2004), chap. 4.
    4. J. Jang, “Preparation and properties of hydrogenated amorphous silicon thin-film transistors,” in thin film transistors, edited by C. R. Kagan and P. Andry (Marcel Dekker, Inc., 2003), chap. 2.
    5. M. Akiyama, H. Toeda, H. Ohtaguro, K. Suzuti, and H. Ito, “An a-Si TFT with a new light shield structure and its application to active matrix liquid crystal display,” IEDM Technical Digest, 268-271 (1995).
    6. K. K. Moez, “An integrated a-Si TFT demultiplexer for driving gate line in active matrix arrays,” Circuits and Systems, 2004 International Symposium on Circuits and Systems (ISCAS ’04), Proceedings of the 2004 International Symposium, 1, 23-26 (2004).
    7. C. F. Yeh, C. L. Chen, Y. C. Yang, S. S. Lin, T. Z. Yang, and T. Y. Hong, “Low temperature processed poly-Si thin film transistors using solid phase crystallization and liquid phase deposition gate oxide,” Jpn. J. Appl. Phys. 33, 1798-1800 (1994).
    8. H. Y. Lin, C. Y. Chang, T. F. Lei, M. Liu, W. L. Yang, J. Y. Cheng, H. C. Tseng, and L. P. Chen, “Low temperature and low thermal budget fabrication of polycrystalline silicon thin film transistors,” IEEE Electron Devices Lett. 17, 503-505 (1996).
    9. M. Valdinoci, L. Coalalongo, G. Baccarani, G. Fortunato, A. Pecora, and I. Policicchio, “Floating body effects in polysilicon thin film transistors,” IEEE Trans. Electron Devices, 44, 2234-2241 (1997).
    10. K. Y. Lee, Y. K. Fang, C. W. Chen, K. C. Huang, M. S. Liang, and S. G. Wu, “To suppress UV damage on the substhreshold characteristics of TFT during hydrogenation for high density TFT SRAM,” IEEE Electron Devices Lett. 18, 4-6 (1997).
    11. N. D. Toung, G. Harkin, R. M. Bunn, D. J. McCulloch, and I. D. French, “The fabrication and characterization of EEPROM arrays on glass using a low temperature poly-Si TFT process,” IEEE Electron Devices Lett. 43, 1930-1932 (1996).
    12. Z. Meng, M. Wang, and M. Wang, “High performance low temperature metal induced unilaterally crystallized polycrystalline silicon thin film transistors for system on panel applications,” IEEE Trans. Electron Devices, 47, 404-409 (2000).
    13. J. Jang, “Poly-Si TFTs by direct deposition methods,” in Thin Film Transistors – Materials and Processes : Volume 2 Polycrystalline Silicon Thin Film Transistors, edited by Y. Kuo (Kluwer Academic Publisher, 2004), chap. 7.
    14. I. D. French, S. C. Deane, and P. Roca I Cabarrocas, “Microcrystalline Si TFTs for integrated multiplexers and shift registers,” Asia Display/International Display Workshops 2001 (IDW ’01), Active-matrix Displays (AMD) 6-1, 367-370 (2001).
    15. M. Mulato, Y. Chen, S. Wanger, and A. R. Zanatta, “Microcrystalline silicon with high electron field-effect mobility deposited at 230 oC,” J. Non. Crys. Soilds, 266, 1260-1264 (2000).
    16. J. H. Joo, “Low-temperature polysilicon deposition by ionized magnetron sputtering,” J. Vac. Sci. Technol. A18, 2006-2011 (2000).
    17. Y. Mishima, M. Takei, T. Uematsu, N, Matsumoto, T. Kakehi, U. Wakino, and M. Okabe, “Polycrystalline silicon formed by ultrahigh-vacuum sputtering system,” J. Appl. Phys. 78, 217-223 (1995).
    18. D. B. Meakin and W. Ahmed, “LPCVD of in-situ phosphorous doped polysilicon from PH3/Si2H6 mixtures,” 1986 Electrochemical Society Meeting (San Diego, Oct. 1986), abstract 267, 398-399 (1986).
    19. R. Falckenberg, E. Doering, and H. Oppolzer, “Surface roughness and grain growth of thin p-doped polycrystalline Si films,” 1979 Electrochemical Society Meeting (Los Angeles, Oct. 1979), abstract 570, 398-399 (1979).
    20. C. V. Thompson, “Secondary grain growth in thin films of semiconductors: Theoretical aspects,” J. Appl. Phys. 58, 763-772 (1985).
    21. K. Nakazawa, “Recrystallization of amorphous silicon films deposited by low-pressure chemical vapor deposition from Si2H6 gas,” J. Appl. Phys. 69, 1703-1706 (1991).
    22. M. Bonnel, N. Duhamel, L. Haji, B. Loisel, and J. Stoemenos, “Ploycrystalline silicon thin-film transistors with two step annealing process,” IEEE Electron Device Lett. 14, 551-553 (1993).
    23. S. D. Brotherton, D. J. McCulloch, J. P. Gowers, J. R. Ayres, and M. J. Trainor, “Influence of melt depth in laser crystallized poly-Si thin film transistors,” J. Appl. Phys. 82 4086-4094 (1997).
    24. C. Hayzelden and J. L. Batstone, “Silicde formation and silicide-mediated crystallization of nickel-implanted amorphous silicon thin films,” J. Appl. Phys. 73, 8279-8289 (1993).
    25. A. R. Joshi, T. Krishnamohan, and K. C. Saraswat, “A model for crystal growth during metal induced lateral crystallization of amorphous silicon,” J. Appl. Phys. 93, 175-181 (2003).
    26. M. A. T. Izmajlowicz, A. J. Flewitt, W. I. Milne, and N. A. Morrison, “Directional nickel-induced fielded aided lateral crystallization of amorphous silicon,”J. Appl. Phys. 94, 7535-7541(2003).
    27. S. Morozumi, K. Oguchi, S. Yazawa, T. Kodaira, H. Ohshima, and T. Mano, “B/W and color LC video display addressed by poly-Si TFTs,” Society for Information Display (SID) Dig. 156 (1983).
    28. S. D. S. Malhi, H. Shichijo, S. K. Banerjee, R. Sundaresan, M. Elahy, G. P. Polack, W. F. Richardson, A. H. Shah, L. R. Hite, R. H. Womack, P. K. Chatterjee, and H. W. Lam, “Characteristics and three-dimensional integration of MOSFETs in small-grain LPCVD polycrystalline silicon,” IEEE Trans. Electron Devices, 32, 258-281 (1985).
    29. T. Yamanaka, T. Hashimoto, N. Hasegawa, T. Tanaka, N. Hashimoto, A. Shimizu, N. Ohki, K. Ishibashi, K. Sasaki, T. Nishida, T. Mine, E. Takeda, and T. Nagano, “Advanced TFT SRAM cell technology using a phase-shift lithography,” IEEE Trans. Electron Devices, 42, 1305-1313 (1995).
    30. K. Yoshizaki, h. Takahashi, Y. Kamigaki, T. Yasui, K. Komori, and H. Katto, IEEE Solid-State Circuits Conference (ISSCC), Digest of Tech. Papers, 166, 1985.
    31. N. D. Young, G. Harkin, R.M. Bunn, D. J. McCulloch, and I.D. French, “The fabrication and characterization of EEPROM arrays on glass using a low-temperature poly-Si TFT process,” IEEE Trans. Electron Devices, 43, 1930-1936 (1996).
    32. T. Kaneko, Y. Hosokawa, M. Tadauchi, Y. Kita, and H. Andoh, “400 dpi integrated contact type linear image sensors with poly-Si TFT’s analog readout circuits and dynamic shift registers,” IEEE Trans. Electron Devices, 38, 1086-1039 (1991).
    33. Y. Hayashi, H. Hayashi, M. Negishi, and T. Matsushita, “A thermal printer head with CMOS thin-film transistors and heating elements integrated on a chip,” IEEE Solid-State Circuits Conference (ISSCC), 266, 1998.
    34. N. Yamauchi, Y., Inaba, and M. Okamura, “An integrated photodetector-amplifier using a-Si p-i-n photodiodes and poly-Si thin-film transistors,” IEEE Photonic Tech. Lett. 5, 319-321 (1993).
    35. M. G. Clark, “Current status and future prospects of poly-Si,” IEEE Proc. Circuits Devices System, 33, 1994.
    36. T. J. King and K. C. Saraswat, “Polycrystalline silicon-germanium thin-film transistors,” IEEE Trans. Electron Devices, 41, 1581-1590 (1994).
    37. T. J. King and K. Saraswat, “A low-temperature silicon-germanium MOS thin film transistor technology for large area electronics,” IEDM Technical Digest, 567-570 (1991).
    38. T. J. King and K. Saraswat, “Deposition and properties of low pressure chemical vapor deposited polycrystalline silicon-germanium film,” J. Electrochem. Soc. 141, 2235-2241 (1994).
    39. J. Rem, L. M. De, J. Holleman, and J. Verweij, “Furnace and rapid thermal crystallization of amorphous Si1-xGex and Si for thin film transistors,” Thin Solid Films, 296, 152-156 (1996).
    40. T. J. King, J. R. Pfiester, and K. C. Saraswat, “A variable-work-function polycrystalline Si1-xGex gate material for sub-micrometer CMOS technologies,” IEEE Electron Device Lett. 12, 533-535 (1991).
    41. C. W. Hwang, M. K. Ryu, and K. B. Kim, “Solid phase crystallization of amorphous Si1-xGex films deposited on SiO2 by molecular beam epitaxy,” J. Appl. Phys. 77, 3042-3047 (1995).
    42. J. Olivares, A. Rodriguez, J. Sangrador, T. Rodriguez, C. Ballesteros, and A. Kling, “Solid-phase crystallization of amorphous SiGe films deposited by LPCVD on SiO2 and glass,” Thin Solid Films, 337, 51-54 (1999).
    43. J. Olivares, P. Martin, A. Rodriguez, J. Sangrador, T. Jimenez, and T. Rodriguez, “Raman spectroscopy study of amorphous SiGe films deposited by low pressure chemical vapor deposition and polycrystalline SiGe films obtained by solid-phase crystallization,” Thin Solid Films, 358, 56-61 (2000).
    44. A. Rodriguez, T. Rodriguez, J. Olivares, and J. Sangrador, “Nucleation site location and its influence on the microstructure of solid-phase crystallized SiGe films,” J. Appl. Phys. 90, 2544-2552 (2001).
    45. O. H. Roh, W. J. Yun, and J. K. Lee, “Variation of spin densities and the solid-phase crystallization of amorphous Si1-xGex:H films,” J. Appl. Phys. 90, 2786-2791 (2001).
    46. S. Yamaguchi, N. Sugii, S. K. Park, K. Nakagawa, and M. Miyao, “Solid-phase crystallization of Si1-xGex alloy layers,” J. Appl. Phys. 89, 2091-2095 (2001).
    47. C. Eisele, M. Berger, M. Nerding, H. P. Strunk, C. E. Nebel, and M. Stutzmann, “Laser-crystallized microcrystalline SiGe alloys for thin film solar cells,” Thin Solid Films, 427, 176-180 (2003).
    48. H. Kanno, I. Tsunoda, A. Kenjo, T. Sadoh, and M. Miyao, “Ge-fraction-dependent metal-induced lateral crystallization of amorphous Si1-xGex (0□x□1) on SiO2,” Appl. Phys. Lett. 82, 2148-2150 (2003).
    49. C. H. Yu, P. H. Yeh, L. W. Cheng, S. L. Cheng, and L.J. Chen, “Metal-induced crystallization of amorphous Si1-xGex by rapid thermal annealing,” Thin Solid Films, 461, 81-85 (2004).
    50. T. J. King, J. R. Pfiester, J. D. Shott, J. P. McVittie, and K. C. Saraswat, “Polycrystalline-Si1-xGex-gate CMOS technology,” IEDM Technical Digest, 253-256 (1990).
    51. Y. V. Ponomarev, C. Salm, J. Schmitz, P. H. Woerlee, and D. J. Gravesteijn, “High-performance deep submicron MOST’s with polycrystalline-Si1-xGex gates,” in VLSI Technology, Systems, and Applications (VLSI-TAS), 311–315 (1997).
    52. K. Chen, J. Duster, H. C. Wann, T. Tanaka, M. Yoshida, P. K. Ko, and C. Hu, “Universal MOSFET’s carrier mobility model solely dependent Vg; Vt; Tox and its applications in device modeling and IC performance optimization,” in Proc. International Semicon. Device Research Symp. (ISDRS), 607–610 (1995).
    53. S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the university of inversion layer mobility in Si MOSFET’s—Part I: Effects of substrate impurity concentration,” IEEE Trans. Electron Devices, 41, 2357–2362 (1994).
    54. J. Banqueri, J. A. Lopez-Villanueva, F. Gamiz, J. E. Carceller, E. Lora-Tamayo, and M. Lozano, “A procedure for the determination of the effective mobility in an N-MOSFET in the moderate inversion region,” Solid-State Electron. 6, 875–883 (1996).
    55. W. C. Lee, Y. C. King, T. J. King, and C. Hu, “Investigation of poly-Si1-xGex for dual gate CMOS technology,” Electron Device Lett. 19, 247-249 (1998).
    56. W. C. Le, T. J. King, and C. Hu, “Optimized poly-Si1-xGex gate technology for dual-gate CMOS application,” VLSI Symposium on Tech. 190-191 (1998).
    57. H. Sirringhaus, R. J. Wilson, R. H. Friend, M. Inbasekaran, W. Wu, E. P. Woo, M. Grell, and D. C. Bradley, “Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase,” Appl. Phys. Lett. 77, 406-408 (2000).
    58. B. S. Ong, Y. Wu, P. Liu, and S. Gardner, “High-performance semi- conducting polythiophenes for organic thin-film transistors,” J. Am. Chem. Soc. 126, 3378-3379 (2004).
    59. C. D. Dimitrakopoulos and D. J. Mascaro, “Organic thin-film transistors: A review of recent advances,” IBM J. Res. and Dev. 45, 11-27 (2001).
    60. Z. Bao, “Materials and fabrication needs for low-cost organic circuits,” Adv. Mater. 12, 227-230 (2000).
    61. H. E. A. Huitena, G. H. Gelinck, K. E. Kuijk, C. M. Hart, E. Cantatore, P. T. Herwig, A. J. J. M. van Breemen, D. M. de Leeuw, “Plastic transistor in active-matrix displays,” Nature, 414, 599 (2001).
    62. F. Garnier, R. Hajlaoui, A. Yassar, P. Srivastava, “All-polymer field-effect transistor realized by printing techniques,” Science, 265, 1684-1686 (1994).
    63. C. D. Dimitrakopoulos, S. Purushothaman, J. Kymissis, A. Callegari, J. M. Shaw, “Low-voltage organic transistors on plastic comprising high dielectric constant gate insulators,” Science, 283, 822-824 (1999).
    64. C. D. Sheraw, J. A. Nichols, D. J. Gundlach, J. R. Huang, C. C. Kau, H. Klauk, T. N. Jackson, M. G. Kane, J. Campi, F. P. Cuomo, and B. K. Greening, “Fast organic circuits on flexible polymeric substrates,” IEDM Technical Digest, 619-622 (2000).
    65. G. H. Gelinck, T. C. T. Genus, and D. M. van de Leeuw, “High-performance all-polymer integrated circuits,” Appl. Phys. Lett. 77, 1487-1489 (2000).
    66. B. K. Crone, A. Dodabalapur, R. Sarpeshkar, R. W. Filas, Y. Y. Lin, Z. Bao, J. H. O’Neill, W. Li, and H. E. Katz, “Design and fabrication of organic complementary circuits,” J. Appl. Phys. 89, 5125-5132 (2001).
    67. C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, “Organic thin-films transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates,” Appl. Phys. Lett. 80, 1088-1090 (2002).
    68. H. E. A. Huitema, G. H. Gelinck, J. B. P. H. van der Putten, K. E. Kuijk, K. M. Hart, E. Cantatore, and D. M. de Leeuw, “Active-matrix displays driven by solution processed polymeric transistors,” Adv. Mater. 14, 1201-1204 (2002).
    69. P. Mach, S. J. Rodriquez, R. Nortrup, P. Wiltzius, and J. A. Rogers, “Monolithically integrated, flexible display of polymer-dispersed liquid crystal driven by rubber-stamped thin film transistors,” Appl. Phys. Lett. 78, 3592-3594 (2001).
    70. B. Crone, A. Dodabalapur, A. Gelperin, L. Torsi, H. E. Katz, A. J. Lovinger, and Z. Bao, “Electronic sensing of vapors with organic transistors,” Appl. Phys, Lett. 78, 2229-2231 (2001).
    71. B. Crone, A. Dodabalapur, R. Sarpeshkar, A. Gelperin, H. E. Katz, and Z. Bao, “Organic oscillator and adaptive amplifier circuits for chemical vapor sensing,” J. Appl. Phys. 91, 10140-10146 (2002).
    72. C. Bartic, B. Palan, A. Campitelli, and G. Borghs, “Monitoring pH with organic-base thin-film transistors,” Sensors and Actuators B, 83, 115-122 (2002).
    73. J. A. Rogers, Z. Bao, K. Baldwin, A. Dodabalapur, B. Crone, V. R. Raju, V. Kuck, H. Katz, K. Amundson, J. Ewing, and P. Drzaic, “Paper-like electronic displays: Large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks,” Proceedings of the National Sputtering Association (NSA), 98, 4835-4840 (2001).
    74. D. J. Gundlach, H. Klauk, C. D. Kau, J. R. Huang, and T. N. Jackson, “High-mobility, low voltage organic thin film transistors,” IEDM Technical Digest, 111-114 (1999).
    75. W. K. Tommie, V. M. Dawn, F. B. Paul, P. S. Terry, and D. J. Todd, “High performance organic thin film transistors,” Mater. Res. Soc. Symp. Proc. 771, L6.5.1-L6.5.11 (2003).
    76. H. Sirringhaus, T. Kawase, R. H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, E. P. Woo, “High-resolution inkjet printing of all-polymer transistor circuits,” Science, 290, 2123-2126 (2000).

    Chapter 2 References

    1. T. Sameshima, “Status of Si thin fulm transistors,” J. Non-Cryst. Solids, 227-230, 1196-1201 (1998).
    2. J. G. Blake, J. D. Stevens, and R. Young, “Impact of low temperature polysilicon on the AMLCD market,” Solid State Tech. 41, 56-62 (1998).
    3. J. Hanari, “Current and future technology of low temperature poly-Si TFT-LCDs,” J. of the Society for Information Display (SID), 9, 169-172 (2001).
    4. S. D. Theiss, P. G. Carey, P. M. Smith, P. Wickboldt, T. W. Sigmon, Y. J. Tung, and T. T. King, “Polysilicon thin film transistors fabricated at 100 oC on a flexible plastic substrate,” IEDM Technical Digest, 257-260 (1998).
    5. Y. Lee, L. Hand, S. J. Fonash, “High-performance poly-Si TFTs on substrates using nano-structured separation layer approach,” IEEE Electron Device Lett. 24, 19-21 (2003).
    6. J. Jang, “Poly-Si TFTs by non-laser crystallization methods,” in Thin Film Transistors – Materials and Processes : Volume 2 Polycrystalline Silicon Thin Film Transistors, edited by Y. Kuo (Kluwer Academic Publisher, 2004), chap. 6.
    7. A. Mimura, N. Konishi, K. Ono, J. Ohwada, Y. Hosokawa, Y. Ono, T. Suzuki, K. Miyata, and H. Kawakami, “High performance low-temperature poly-Si n-channel TFTs for LCD,” IEEE Trans. Electron Devices, 36, 351-359 (1989).
    8. A. Nakamura, F. Emoto, E. Fujii, Y. Uemoto, A. Yamamoto, K. Senda, G. Kano, “Recrystallization mechanism for solid phase growth of poly-Si film on quartz substrate,” Jpn. J. Appl. Phys. part 2, 27, L2408-L2410 (1988).
    9. M. K. Hatalis and D. W. Greve, “Large grain polycrystalline silicon by low-temperature annealing of low-pressure chemical vapor deposited amorphous silicon films,” J. Appl. Phys. 63, 2260-2266 (1988).
    10. E. Adachi, T. Aoyama, N. Konishi, T. Suzuki Y. Okajima, and K. Mjyata, “TEM observation of initial crystallization states for LPCVD Si films,” Jpn. J. Appl. Phys. 27, L1809-L1811 (1988).
    11. A. T. Vouttsas and M. K. Hatalis, “Deposition and crystallization of a-Si low pressure chemical vapor deposited films obtained by low temperature pyrolysis disiline,” J. Electrochem. Soc. 140, 871-877 (1993).
    12. K. Nakazama, “Recrystallization of amorphous silicon films deposited by low pressure chemical vapor deposition from Si2H6 gas,” J. Appl. Phys. 69, 1703-1706 (1991).
    13. Y. Kuo and P. M. Kozlowski, “Polycrystalline silicon formation by pulsed rapid thermal annealing of amorphous silicon,” Appl. Phys. Lett. 69, 1092-1094 (1996).
    14. E. I. Shtyrkov, I. B. Khaibullin, M. M. Zaripov, M. F. Galyatudinov, and R. M. Bayasitov, “Local laser annealing of implantation doped semiconductor layers,” Sov. Phys. Semicond. 9, 1309-1310 (1975).
    15. T. Sameshima, “Poly-Si TFTs by laser crystallization methods,” in Thin Film Transistors – Materials and Processes : Volume 2 Polycrystalline Silicon Thin Film Transistors, edited by Y. Kuo (Kluwer Academic Publisher, 2004), chap. 5.
    16. R. S. Sussmann, A. J. Harris, and R. Ogden, “Laser annealing of glow discharge amorphous silicon,” J. Non-crystal. Solid, 35-36, 249-254 (1980).
    17. T. Sameshima and S. Usui, “XeCl excimer laser annealing used in the fabrication of poly-Si TFTs,” Mater. Res. Soc. Symp. Proc. 71, 435-440 (1986).
    18. T. Sameshima, S. Usui, and M. Sekiya, “XeCl excimer annealing used in the fabrication of poly-Si TFTs,” IEEE Electron Device Lett. 7, 276-278 (1986).
    19. S. Uchikoga and N. Ibaraki, “Low temperature poly-Si TFT-LCD by excimer laser annealing,” Thin Solid Films, 383, 19-24 (2001).
    20. I. Asai, N. Kato, M. Fuso, and T. Hamano, “Poly-silicon thin-film transistors with uniform performance fabricated by excimer laser annealing,” Jpn. J. Appl. Phys. 32, 474-481 (1993).
    21. A. M. McCarthy, K. H. Weiner, T. W. Sigmon, “Nanosecond thermal processing of polysilicon thin films,” Mater. Res. Soc. Proc. 182, 121-125 (1990).
    22. L. Haji, P. Joubert, J. Stoemenos, and N. A. Economou, “Mode of growth and microstructure of polycrystalline silicon obtained by solid-phase crystallization of an amorphous silicon film,” J. Appl. Phys. 75, 3944-3952 (1994).
    23. F. Petinot, F. Plais, D. Mencaraglia, P. Legagneux, C. Reita, O. Huet, and D. Pribat, “Defects in solid phase and laser crystallized polysilicon thin film transistors,” J. Non-Cryst. Soild, 227-230, 1207-1212 (1998).
    24. J. Siegel, J. Solis, and C. N. Afonso, “Slow interfacial reamorphization of Ge films melted by ps laser pulses,” J. Appl. Phys. 84, 5531-5537 (1998).
    25. H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuwahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, H. Kawata, M. Osumi, S. Tsuda, S. Nakano, and Yukinori Kuwano, “Enlargement of poly-Si film grain size by excimer laser annealing and its application to high-performance poly-Si thin film transistor,” Jpn. J. Appl. Phys. 30, 3700–3703 (1991).
    26. D. H. Choi, K. Shimizu, O. Sugiura, and M. Matsumura, “Drastic enlargement of grain size of excimer-laser-crystallized polysilicon films,” Jpn. J. Appl. Phys. 31, 4545-4549 (1992).
    27. A. Marmorstein, A. T. Voutsas, and R. Solanki, “A systematic study and optimization of parameters affecting grain size and surface roughness in excimer laser annealed polysilicon thin films,” J. Appl. Phys. 82, 43303-4309 (1997).
    28. H. S. Choi , J. H. Jun, C. M. Park, B. H. Min and M. K. Han, “Excimer laser-induced crystallization of polycrystalline silicon films by adding oxygen,” Jpn. J. Appl. Phys. 36, 1473-1476 (1997).
    29. S. D. Brotherton, D. J. McCulloch, J. P. Gowers, J. R. Ayres, and M. J. Trainor, “Influence of melt depth in laser crystallized poly-Si thin film transistors,” J. Appl. Phys. 82, 4086-4094 (1997).
    30. A. T. Voutsas, A. M. Marmorstein, and R. Solanki, “The impact of annealing ambient on the performance of excimer-laser-annealed polysilicon thin-film transistors,” J. Electrochem. Soc. 146, 3500-3505 (1999).
    31. D. Toet, P. M. Smith, T. W. Sigmon, T. Takehara, C. C. Tsai, W. R. Harshbarger, and M. O. Thompson, “Laser crystallization and structural characterization of hydrogenated amorphous silicon thin films,” J. Appl. Phys. 85, 7914-7918 (1999).
    32. J. H. Jeon, J. S. Yoo, C. M. Park, H. S. Choi, and M. K. Han, “A novel method for a smooth interface at poly-SiOx/SiO2 by employing selective etching,” IEEE Electron Device Lett. 21, 152-154 (2000).
    33. A. Marmorstein, A. T. Viutsas, and R. Solanki, “A systematic study and optimization of parameters affecting grain size and surface roughness in excimer laser annealed polysilicon thin films,” J. Appl. Phys. 82, 4303-4309 (1997).
    34. A. Hara, F. Takeuchi, M. Takei, K. Suga, K. Yoshino, M. Chida, Y. Sano, and N. Sasai, “High performance polycrystalline silicon thin film transistors on non-alkari glass produced using continuous wave laser lateral crystallization,” Jpn. J. Appl. Phys. 41, L311-L313 (2002).
    35. G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong, and M. A. Hasan, “Al induced crystallization of a-Si,” J. Appl. Phys. 69, 6394-6399 (1998).
    36. M. S. Haque, H. A. Naseem, and W. D. Brown, “Aluminum-induced crystallization and counter-doping of phosphorous-doped hydrogenated amorphous silicon at low temperatures,” J. Appl. Phys. 79, 7529-7536 (1996).
    37. O. Nast, T. Puzzer, L. M. Koschier, A. B. Sproul, and S. R. Wenham, “Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature,” Appl. Phys. Lett. 73, 3214-3216 (1998).
    38. B. Bian, J. Yie, B. Li, and Z. Wu, “Fractal formation in a-Si:H/Ag/a-Si:H films after annealing,” J. Appl. Phys. 73, 7402-7406 (1993).
    39. L. Hultman, A. Robertsson, H. T. G. Hentzell, I. Engstrom, and P. A. Psaras, “Crystallization of amorphous silicon during thin-film gold reaction,” J. Appl. Phys. 62, 3647-3655 (1987).
    40. S. W. Russell, J. Li, and J. W. Mayer, “In situ observation of fractal growth during a-Si crystallization in a Cu3Si matrix,” Appl. Phys. Lett. 73, 3214-3216 (1998).
    41. Y. Kawazu, H. Kudo, S. Onari, and T. Arai, “Low-temperature crystallization of hydrogenated amorphous silicon induced by nickel silicide formation,” Jpn. J. Appl. Phys. 29, 2698-2704 (1990).
    42. R. C. Cammarata, C. V. Thompson, C. Hayzelden, and K. N. Ku, “Silicide precipitation and silicon crystallization in nickel implanted amorphous silicon thin films,” J. Mater. Res. 5, 2133-2138 (1990).
    43. S. Y. Yoon, K. Hyung, C. O. Kim, J. Y. Oh, and J. Jang, “Low temperature metal induced crystallization of amorphous silicon using Ni solution,” J. Appl. Phys. 27, 5865-5867 (1997).
    44. S. Y. Yoon, S. K. Kim, J. Y. Oh, Y. J. Choi, W. S. Shon, C. O. Kim, and J. Jang, “A high-performance polycrystalline silicon thin-film transistor using metal-induced crystallization with Ni solution,” Jpn. J. Appl. Phys. 37, 7193-7197 (1998).
    45. H. Kim, J. G. Couillard, and D. G. Ast, “Kinetic of silicide-induced crystallization of polycrystalline thin-film transistors fabricated from amorphous chemical-vapor deposition silicon,” Appl. Phys. Lett. 72, 803-805 (1988).
    46. C. Hayzelden and J. L. Batstone, “Silicide formation and silicide-mediated crystallization of nickel-implanted amorphous silicon thin films,” J. Appl. Phys. 73, 8279-8289 (1993).
    47. R. J. Nemanich, C. C. Tsai, M. J. Thompson, and T. W. Sigmon, “Interference enhanced Raman scattering study of interfacial reaction of Pd on a-Si:H,” J. Vac. Sci. Technol. 19, 685-688 (1981).
    48. F. Edelman, C. Cytermann, R. Brener, M. Eizenberg, R. Weil, and W. Beyer, “Interfacial reactions in the Pd/a-Si/c-Si system,” J. Appl. Phys. 71, 289-295 (1992).
    49. S. F. Gong, H. T. G. Hentzell, and A. E. Robertsson, “Initial solid-state reactions between crystalline Sb and amorphous Si thin films,” J. Appl. Phys. 64, 1457-1463 (1988).
    50. S. F. Gong, H. T. G. Hentzell, A. E. Robertsson, L. Hultman, S. E. Hornstrom, and G. Radnoczi, “Al-doped and Sb-doped polycrystalline silicon obtained by means of metal-induced crystallization,” J. Appl. Phys. 62, 3726-373 (1987).
    51. G. Liu and S. J. Fonash, “Polycrystalline silicon thin film transistors on corning 7059 glass substrates using short time, low-temperature processing,” Appl. Phys. Lett. 62, 2554-2556 (1993).
    52. S. Y. Yoon, J. Y. Oh, C. O. Kim, and J. Jang, “Low temperature solid phase crystallization of amorphous silicon using (Au + Ni) solution,” Solid State Communications, 106, 325-328 (1998).
    53. S. Y. Yoon, S. J. Park, K. H. Kim, and J. Jang, “Structural and electrical properties of polycrystalline silicon produced by low-temperature Ni silicide mediated crystallization of the amorphous phase,” J. Appl. Phys. 87, 609-611 (2000).
    54. Z. Jin, G. A. Bhat, M. Yeung, H. S. Kowk, and M. Wong, “Nickel induced crystallization of amorphous silicon thin films,” J. Appl. Phys. 84, 194-200 (1998).
    55. S. W. Lee and S. K. Joo, “Low temperature poly-Si thin-film transistor fabricated by metal-induced lateral crystallization,” IEEE Electron Device Lett. 17, 160-162 (1996).
    56. M. Wong, Z. Jin, G. A. Bhat, P. C. Wong, and H. S. Kwok, “Characterization of the MIC/MILC interface and its effects on the performance of MILC thin-film transistor,” IEEE Trans. Electron Devices, 47, 1061-1067 (2000).
    57. A. R. Joshi, T. Kirshnamohan, and K. C. Saraswat, “A model for crystal growth during metal induced lateral crystallization of amorphous silicon,” J. Appl. Phys. 93, 175-181 (2003).
    58. J. Jang, J. Y. Oh, S. K. Kim, Y. J. Choi, S. Y. Yoon, and C. O. Kim, “Electric-field-enhanced crystallization of amorphous silicon,” Nature, 395, 481-483 (1998).
    59. S. Y. Yoon, J. Y. Oh, C. O. Kim, and J. Jang, “Low temperature solid phase crystallization of amorphous silicon at 380 oC,” J. Appl. Phys. 84, 6463-6465 (1998).
    60. S. Y. Yoon, S. J. Park, K. H. Kim, and J. Jang, “Metal-induced crystallization of amorphous silicon,” Thin Solid Films, 383, 34-38 (2001).
    61. A. Khakifirooz, S. Mohajerzadeh, and S. Haji, “Field-assisted metal-induced crystallization of amorphous silicon films,” J. Vac. Sci. Technol. A 19, 2453-2455 (2001).
    62. H. Y. Kim, B. Ki, J. U. Bae, K. J. Hwang, and H. S. Seo, “Kinetic of electric-field-enhanced crystallization of amorphous silicon in contact with Ni catalyst,” Appl. Phys. Lett. 81, 5180-5182 (2002).
    63. J. B. Lee, C. J. Lee, and D. K. Choi, “Influences of various metal elements on field aided lateral crystallization of amorphous silicon films,” Jpn. J. Appl. Phys. 40, 6177-6181 (2001).
    64. M. A. T. Izmajlowicz, A. J. Flewitt, W. I. Milne, and N. A. Morrison, “Directional nickel-induced fielded aided lateral crystallization of amorphous silicon,” J. Appl. Phys. 94, 7535-7541 (2003).
    65. S. K. Jun, Y. H. Yang, J. B. Lee, and D. K. Choi, “Electrical characteristics of thin-film transistors using field-aided lateral crystallization,” Appl. Phys. Lett. 75, 2235-2237 (1999).
    66. T. Sameshima and K. Ozaki, “Crystallization of silicon thin films by current-induced Joule heating,” Thin Solid Films, 383, 107-109 (2001).
    67. T. Sameshima, Y. Kaneko, and N. Andoh, “Rapid crystallization of silicon films using Joule heating of metal films,” Appl. Phys. A 73, 419-423 (2001).
    68. T. Sameshima, N. Andoh, and H. Takahashi, “Rapid crystallization of silicon films using electric-current-induced joule heating,” J. Appl. Phys. 89, 5362-5367 (2001).
    69. N. Andoh and T. Sameshima, “Crystalline grain growth in the lateral direction for silicon thin films by electric current-induced Joule heating,” Jpn. J. Appl. Phys. 41, 5513-5516 (2002).
    70. Y. Kaneko, N. Andoh, and T. Sameshima, “Rapid Joule heating of metal films used to fabricate polycrystalline silicon thin film transistors,” Jpn. J. Appl. Phys. 41, L913-L915 (2002).

    Chapter 3 References

    1. H. Moissan, "The electric furnace," (English transl. by A. de Mouilpied) Edward Arnold, London, 1904.
    2. R. Wehrmann, in "High-temperature materials and technology," (I. E. Campbell and E. M. Sherwood, eds.) Wiley, New York, 1967, p.399.
    3. B. N. Padnos "Integrated silicon device technology," Vol. X. Chemical/Metallurgical Properties of Silicon, Research Triangle Inst., North Carolina, 1965.
    4. M. P. Lepselter and J. M. Andrews, in "Ohmic contacts to semiconductors," (B. Schwartz, ed.) Electrochem. Soc. Princeton, New Jersey, 1969, p.159.
    5. K. N. Tu and J. W. Mayer, in "Thin films-interdiffusion and reactions," edited by J. M. Poate, K. N. Tu and J. W. Mayer, (Wiley, New York, 1978).
    6. S. P. Murarka, "Interaction in metallization systems for integrated circuits," J. Vac. Sci. Technol. B2, 693-706 (1984).
    7. M. A. Nicolet, "Diffusion barriers in thin films," Thin Solid Films, 52, 415-443 (l978).
    8. P. S. Ho, "General aspects of barrier layers for very large scale integration applications," Thin Solid Films, 96, 301-316 (1982).
    9. K. N. Tu, "Shallow and parallel silicide contacts," J. Vac. Sci. Technol. 19, 766-777 (1981).
    10. P. S. Ho, "Basic problems in interconnect metallization for VLSI applications," Proc. ROC IEDMS, Edited by L. J. Chen, (Hsinchu, ROC,1984), p.471.
    11. A. Y. C. Yu, "Electron tunneling and contact resistance of metal silicon contact barriers," Solid-State Electron. 13, 239-247 (1970).
    12. S. P. Murarka, "Refractory silicides for integrated circuits," J. Vac. Sci. Technol. 17, 775-792 (1980).
    13. H. J. Geipel, Jr. N. Hsieh, M. H. Ishaq, C. W. Koburger, and F. R. White, "Composite silicide gate electrodes-interconnections for VLSI device technologies," IEEE Trans. Electron Devices, ED-27, 1417-1424 (1980).
    14. S. P. Murarka and D. B. Fraser, "Thin film interaction between titanium and polycrystalline silicon," J. Appl. Phys. 51, 342-349 (1980).
    15. Y. Narita, S. Ohya, Y. Murao, S. K.anauchi, and M. Kikuchi, "A high speed 1-Mbit EPROM with a Ti-Silicide gate," IEEE Trans. Electron Devices, ED-32, 498-501 (1985).
    16. A. N. Saxena and D. Pramanik, "VLSI multilevel metallization," Solid State Technol. 27, 93-100 (1984).
    17. A. K. Sinha, "Refractory metal silicides for VLSI applications," J. Vac. Sci. Technol. 19, 778-785 (1981).
    18. M. Eizenberg, H. Foll, and K. N. Tu, "Formation of shallow schottky contacts to Si using Pt-Si and Pd-Si alloy films," J. Appl. Phys. 52, 861-868 (1981).
    19. S. P. Murarka, "Silicides for VLSI applications," (Academic Press, Orlando, Florida, 1983).
    20. R. T. Tung, "Schottky-barrier formation at single-crystal metal-semiconductor interfaces," Phys. Rev. Lett. 52, 461-464 (1984).
    21. T. Kawamura, D. Shinoda and H. Muta, "Oriented growth of the interfacial PtSi layer or between Pt and Si," Appl. Phys. Lett. 11, 101-103 (1967).
    22. W. D. Buckley and S. C. Moss, "Structure and electrical characteristics of epitaxial palladium silicide contacts on single crystal silicon and diffused p-n diodes," Solid State Electron. 15, 1331-1337 (1972).
    23. G. J. van Gurp and C. Langereis, "Cobalt silicide layers on Si. I. structure and growth," J. Appl. Phys. 46. 4301-4307 (1975).
    24. R. M. Wlaser and R. W. Bene, "First phase nucleation in silicon-transition-metal planar interfaces," Appl. Phys. Lett. 28, 624-625 (1976).
    25. R. W. Bene, "A kinetic model for solid-state silicide nucleation," J. Appl. Phys. 61,1826-1833 (1987).
    26. M. H. Wang and L. J. Chen, "Phase formation in the interfacial reactions of ultrahigh vacuum deposited titanium thin-films on (111)Si," J. Appl. Phys. 71, 5918-5925 (1992).
    27. W. J. Chen and L. J. Chen, "Interfacial reactions of nickel thin films on BF2+-implanted (001)Si," J. Appl. Phys. 70, 2628-2633 (1991).
    28. B. Y. Tsaur, S. S. Lau, J. W. Mayer, and M. A. Nicolet, "Sequence of phase formation in planar metal-Si reaction couples," Appl. Phys. Lett. 38, 922-924 (1981).
    29. L. J. Chen, C. M. Doland, I. W. Wu, J. J. Chu, and S. W. Lu, "The effects of implantation impurities and substrate crystallinity on the formation of NiSi2 on silicon at 200-280 °C," J. Appl. Phys. 62, 2789-2792 (1987).
    30. S. W. Lu, C. W. Nieh, and L. J. Chen, "Epitaxial growth of NiSi2 on ion-implanted silicon at 250-280 °C," Appl. Phys. Lett. 49, 1770-1772 (1986).
    31. J M. H. Wang and L. J. Chen, "Simultaneous occurrence of multiphases in the interfacial reactions of ultrahigh vacuum deposited Ti thin films on (111)Si," Appl. Phys. Lett. 59, 2460-2462 (1991).
    32. W. Y. Hsieh, J. H. Lin, and L. J. Chen, "Simultaneous occurrence of multiphases in the interfacial reactions of ultrahigh vacuum deposited Hf and Cr thin films on (111)Si," Appl. Phys. Lett. 62, 1088-1090 (1991).
    33. T. L. lee and L. J. Chen, "Interfacial reactions of ultrahigh vacuum deposited yttrium thin films on (111)Si at low temperatures," J. Appl. Phys. 73, 8258-8266 (1993).
    34. K. N. Tu, "Selective growth of meal-rich silicide of near-noble metals," Appl. Phys. Lett. 27, 221-224 (1975).
    35. N. W. Cheung, R. J. Culberstson, L. C. Feldman, P. J. Silverman, K. W. West, and J. W. Mayer, "Ni on Si(111) : reactivity and interface structure," Phys. Rev. Lett. 45, 120-124 (1980).
    36. C. D. Lien and M. A. Nicolet, "Impurity effects in transition metal silicides," J. Vac. Sci. Technol. B2, 738-747 (1984).
    37. M. Wittmer, "Growth kinetics of platinum silicides," J. Appl. Phys. 54, 5081-5086 (1983).
    38. The National Technology Roadmap for Semiconductors, (Semiconductor Industry Association, 109-110 (1997).
    39. H. B. Huntington and A. B. Pippard, “Electromigration in metals,” in Electronic Thin Film Science for Electrical Engineers and Materials Scientists, edited by K. N. Tu, J. W. Mayer, and L. C. Feldman (Macmillan Publishing Company, New York, 1992), 355-368.
    40. C. K. Hu, “Electromigration failure mechanisms in bamboo-grained Al(Cu) interconnections,” Thin Soild Film, 260, 124-134 (1995).
    41. A.S. Oates, F. Nkansah, and S. Chittipeddi, “Electromigration-induced drift failure of via contacts in multilevel metallization,” J. Appl. Phys. 72, 2227-2231 (1992).
    42. J. Tao, K.K. Young, N.W. Cheung, and Chenming Hu, “Electromigration reliability of tungsten and aluminum vias and improvements under AC current stress,” IEEE Trans. Electron Devices, 40, 1398-1405 (1993).
    43. J. Jang, “Poly-Si TFTs by non-laser crystallization methods,” in Thin Film Transistors – Materials and Processes : Volume 2 Polycrystalline Silicon Thin Film Transistors, edited by Y. Kuo (Kluwer Academic Publisher, 2004), chap. 6.
    44. K. Ito, “Preparation of Ge-Si epitaxial alloys by sputtering,” J. Crystal Growth, 45, 340-345 (1978).
    45. A. K. Sinha, T. E. Smith and H. J. Levinstein, “Sintered Ohmic contacts to n- and p-type GaAs,” IEEE Trans. ED-22, 218-240 (1975).
    46. Y. F. Hsieh, “Interfacial reactions of metal thin films on single crystalline Ge,” Ph.D. Thesis, Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan, ROC, 66-71 (1988).
    47. Y. F. Hsieh and L. J. Chen, “Partial epitaxial growth of Ni2Ge and NiGe on Ge(111),” Thin Solid Films, 162, 287-294 (1988).
    48. G. V. Samsonov and V. N. Bondarev, “Germanides,” Primary Sources, New York (1970).
    49. M. Hansen, “Constitution of Binary Alloys,” 2nd ed, McGraw-Hill, New York (1958).
    50. R. P. Elliot, “Constitution of Binary Alloys,” 1st Supplement, McGraw-Hill, New York (1965).
    51. F. A. Shunk, “Constitution of Binary Alloys,” 2nd ed, McGraw-Hill, New York (1969).
    52. “Powder Diffraction File,” by JCPDS International Center For Diffraction Data. Pennsylvania, U. S. A. (1981).
    53. Y. W. Ok, S. H. Kim, Y. J. Song, K. H. Shim, and T. Y. Seong, “Structural properties of Ni silicided Si1-xGex (001) layers,” Semicond. Sci. Technol. 19, 285-290 (2004).
    54. T. Jarmar, J. Seger, F. Ericson, D. Mangelinck, U. Smith, and S. L. Zhang, “Morphology and phase stability of nickel-geranosilicide on Si1-xGex under thermal stress,” J. Appl. Phys. 92, 7193-7199 (2002).

    Chapter 4 References

    1. T. T. Sheng and C. C. Chang, “Transmission Electron Microscopy of Cross Section of Large Scale Integrated Circuits,” IEEE Trans. Electron Devices ED-23, 531-536 (1976).
    2. N. Kato, H. Maruyama, and H. Saka, “Preparation of TEM Plan View Sections on Semiconductor Device Using the Tripod-Polisher and Chemical Etching,” J. Electron Microscopy 50, 9-13 (2001).
    3. J. P. Benedict, R. M. Anderson, and S. J. Klepeise, “Preparation of TEM Plane View Section on Specified Devices Using The Tripod Polisher,” in Electron Microscopy of Semiconducting Materials and ULSI Devices, 523, edited by C. Hayzelden, C. Hetherington, and F. Ross, (Materials Research Society, Pittsburgh, Pennsylvania, 1998) pp. 19-30.

    Chapter 5 References

    1. K. Nakazawa, “Recrystallization of amorphous silicon films deposited by low-pressure chemical vapor deposition from Si2H6 gas,” J. Appl. Phys. 69, 1703-1706 (1991).
    2. M. Hatano, S. Moon, M. Lee, K. Suzuki, and C. P. Grigoropoulos, “Excimer laser-induced temperature field in melting and resolidification of silicon thin films,” J. Appl. Phys. 87, 36-43 (2000).
    3. S. D. Brotherton, D. J. McCulloch, J. P. Gowers, J. R. Ayres, and M. J. Trainor, “Influence of melt depth in laser crystallized poly-Si thin film transistors,” J. Appl. Phys. 82, 4086-4094 (1997).
    4. L. Hultman, A. Robertsson, and H. T. G. Hentzell, I. Engstrom, and P. A. Psaras, “Crystallization of amorphous silicon during thin-film gold reaction,” J. Appl. Phys. 62, 3647-3655 (1987).
    5. R. Kishore, A. Shaik, H. A. Naseem, W. D. Brown, “Atomic force microscopy and X-ray diffraction studies of aluminum-induced crystallization of amorphous silicon in Al/a-Si:H, a-Si:/Al, and Al/a-Si:H/Al thin film structures,” J. Vac. Sci. Technol. B21, 1037-1047 (2003).
    6. S. W. Lee, B. I. Lee, T. K. Kim, and S. K. Joo, “Pd2Si-assisted crystallization of amorphous thin films at low temperature,” J. Appl. Phys. 85, 7180-7184 (1999).
    7. H. Kim, J. G. Gouillard, and D. G. Ast, “Kinetics of silicode-induced crystallization of polycrystalline thin-film transistors fabricated from amorphous chemical-vapor deposition silicon,” Appl. Phys. Lett. 72, 803-805 (1998).
    8. C. Hayzelden and J. L. Batstone, “Silicide formation and silicide-mediated crystallization of nickel-implanted amorphous silicon thin films,” J. Appl. Phys. 73, 8279-8289 (1993).
    9. J. Jang, J. Y. Oh, S. K. Kim, Y. J. Choi, S. Y. Yoon, and C. O. Kim, “Electric-field-enhanced crystallization of amorphous silicon,” Nature, 395, 481-483 (1998).
    10. S. H. Park, S. I. Jun, K. S. Song, C. K. Kim, and D. K. Choi, “Field aided lateral crystallization of amorphous silicon thin film,” Jpn. J. Appl. Phys. 38, L108-L109 (1999).
    11. S. I. Jun, Y. H. Yang, J. B. Lee, and D. K. Choi, “Electrical characteristics of thin-film transistors using field-aided lateral crystallization,” Appl. Phys. Lett. 75, 2235-2237 (1999).
    12. S. Y. Yoon, S. J. Park, K. H. Kim, and J. Jang, “Metal-induced crystallization of amorphous silicon,” Thin Solid Films, 383, 34-38 (2001).
    13. A. Khakifirooz, S. Mohajerzadeh, and S. Haji, “Field-assisted metal-induced crystallization of amorphous silicon films,” J. Vac. Sci. Technol. A19, 2453-2455 (2001).
    14. M. A. T. Izmajlowicz, A. J. Flewitt, W. I. Milne, N. A. Morrison, “Directional nickel-induced fielded aided lateral crystallization of amorphous silicon,” J. Appl. Phys. 94, 7535-7541 (2003).
    15. H. H. Lin, S. L. Cheng, C. Chen, L. J. Chen, and K. N. Tu, “Enhanced dopant activation and elimination of end-of-range defects in BF2+-implanted silicon-on-insulator by high-density current,” Appl. Phys. Lett. 79, 3971-3973 (2001).
    16. T. Sameshima, N. Andoh, and H. Takahashi, “Rapid crystallization of silicon films using electrical-current-induced joule heating,” J. Appl. Phys. 89, 5362-5367 (2001).
    17. T. Sameshima, Y. Kaneko, and N. Andoh, “Rapid crystallization of silicon films using Joule heating of metal films,” Appl. Phys. A, 73, 419-423 (2001).
    18. Y. Kaneko, N. Andoh, and T. Sameshima, “Rapid joule heating of metal films used to fabricate polycrystalline silicon thin film transistors,” Jpn. J. Appl. Phys. 41, L913-L915 (2002).
    19. N. Andoh, and T. Sameshima, “Crystalline grain growth in lateral direction for silicon on thin films by electrical current-induced Joule heating,” Jpn. J. Appl. Phys. 41, 5513-5516 (2002).
    20. K. N. Chen, H. H. Lin, S. L. Cheng, Y. C. Peng, G. H. Shen, L. J. Chen, C. R. Chen, J. S. Huang, and K. N. Tu, "Silicide formation in implanted channels and interfacial reactions of metal contacts under high current density," J. Mater. Res. 14, 4720-4726 (1999).

    Chapter 6 References

    1. K. Nakazawa, “Recrystallization of amorphous silicon films deposited by low-pressure chemical vapor deposition from Si2H6 gas,” J. Appl. Phys. 69, 1703-1706 (1991).
    2. S. D. Brotherton, D. J. McCulloch, J. P. Gowers, J. R. Ayres, and M. J. Trainor, “Influence of melt depth in laser crystallized poly-Si thin film transistors,” J. Appl. Phys. 82, 4086-4094 (1997).
    3. G. Liu and S. J. Fonash, “Selective area crystallization of amorphous silicon films by low-temperature rapid thermal annealing,” Appl. Phys. Lett. 55, 660-662 (1989).
    4. Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok, and M. Wong, “Nickel induced crystallization of amorphous silicon thin films,” J. Appl. Phys. 84, 194-200 (1998).
    5. H. Kim, J. G. Gouillard, and D. G. Ast, “Kinetics of silicode-induced crystallization of polycrystalline thin-film transistors fabricated from amorphous chemical-vapor deposition silicon,” Appl. Phys. Lett. 72, 803-805 (1998).
    6. S. W. Lee, B. I. Lee, T. K. Kim, and S. K. Joo, “Pd2Si-assisted crystallization of amorphous thin films at low temperature,” J. Appl. Phys. 85, 7180-7184 (1999).
    7. C. Hayzelden and J. L. Batstone, “Silicide formation and silicide-mediated crystallization of nickel-implanted amorphous silicon thin films,” J. Appl. Phys. 73, 8279-8289 (1993).
    8. T. J. King and K. C. Saraswat, “Polycrystalline silicon-germanium thin-film transistors,” IEEE Trans. Electron Devices, 41, 1581-1591 (1994).
    9. C. W. Hwang, M. K. Ryu, and K. B. Kim, “Solid phase crystallization of amorphous Si1-xGex films deposited on SiO2 by molecular beam epitaxy,” J. Appl. Phys. 77, 3042-3047 (1995).
    10. J. Olivares, A. Rodriguez, J. Sangrador, T. Rodriguez, C. Ballesteros, and A. Kling, “Solid-phase crystallization of amorphous SiGe films deposited by LPCVD on SiO2 and glass,” Thin Solid Films, 337, 51-54 (1999).
    11. J. Olivares, P. Martin, A. Rodriguez, J. Sangrador, T. Jimenez, and T. Rodriguez, “Raman spectroscopy study of amorphous SiGe films deposited by low pressure chemical vapor deposition and polycrystalline SiGe films obtained by solid-phase crystallization,” Thin Solid Films, 358, 56-61 (2000).
    12. A. Rodriguez, T. Rodriguez, J. Olivares, and J. Sangrador, “Nucleation site location and its influence on the microstructure of solid-phase crystallized SiGe films,” J. Appl. Phys. 90, 2544-2552 (2001).
    13. O. H. Roh, W. J. Yun, and J. K. Lee, “Variation of spin densities and the solid-phase crystallization of amorphous Si1-xGex:H films,” J. Appl. Phys. 90, 2786-2791 (2001).
    14. Z. Jin, G. A. Bhat, M. Yeung, H. S. Kwok, and M. Wong, “Solid-phase reaction of Ni with amorphous SiGe thin film on SiO2,” Jpn. J. Appl. Phys. 36, 1637-1640 (1997).
    15. J. Zhang, K. Shimizu, and J. Hanna, “Ni-seeding effects on the properties of polycrystalline silicon-germanium growth at low temperature,” Appl. Phys. Lett. 82, 1745-1747 (2003).
    16. H. Kanno, I. Tsunoda, A. Kenjo, T. Sadoh, and M. Miyao, “Ge-fraction-dependent metal-induced lateral crystallization f amorphous Si1-xGex (0□x□1) on SiO2,” Appl. Phys. Lett. 82, 2148-2150 (2003).
    17. T. Jarmar, J. Seger, F. Ericson, D. Mangelinck, U. Smith, S. L. Zhang, “Morphological and phase stability of nickel-germanosilicide on Si1-xGex under thermal stress,” J. Appl. Phys. 92, 7193-7199 (2002).
    18. D. B. Aldrich, Y. L. Chen, D. E. Sayers, R. J. Nemanich, S. P. Ashburn, M. C. Ozturk, “Stability of C54 titanium germanosilicide on silicon-germanium alloy substrate,” J. Appl. Phys. 77, 5107-5114 (1995).
    19. Z. Wang, D. B. Aldrich, Y. L. Chen, D. E. Sayers, R. J. Nemanich, “Silicide formation and stability of Ti/SiGe and Co/SiGe,” Thin Solid Films, 270, 555-560 (1995).
    20. J. B. Lai and L. J. Chen, “Effects of composition n the formation temperatures and electrical resistivities of C54 titanium germanosilicide in Ti-Si1-xGex systems,” J. Appl. Phys. 86, 1340-1345 (1999).
    21. L. J. Chen, J. B. Lai, and C. S. Lee, “High-resolution transmission electron microscopy of phase formation and growth in metal-Si-Ge systems,” Micron, 33, 535-540 (2002).

    Chapter 7 References

    1. R. R. Chromik, L. Zavalij, M. D. Johnson, and E. J.K. Cotts, “Calorimetric investigation of the formation of metastable silicides in Au/a-Si thin film multilayers,” J. Appl. Phys. 91, 8992-8998 (2002).
    2. M. S. Ashtikar and G. L. Sharma, “Structural investigation of gold induced crystallization in hydrogenated amorphous silicon thin films,” Jpn. J. Appl. Phys. 34, 5520-5526 (1995).
    3. T. J. Konno and R. Sinclair, “Metal-contact-induced crystallization of semiconductors,” Mater. Sci. Eng. A 179/180, 426-432 (1994).
    4. O. Nast, T. Puzzer, L. M. Koschier, A. B. Sproul, and S. R. Wenham, “Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature,” Appl. Phys. Lett. 73, 3214-3216 (1998).
    5. C. Hayzelden and J. L. Batstone, “Silicide formation and silicide-mediated crystallization of nickel-implanted amorphous silicon thin films,” J. Appl. Phys. 73, 8279-8289 (1993).
    6. M. Miyasaka, K. Makihira, and T. Asano, “In situ observation of nickel metal-induced lateral crystallization of amorphous silicon thin films,” Appl. Phys. Lett. 80, 944-946 (2002).
    7. S. W. Lee, B. I. Lee, T. K. Kim, and S. K. Joo, “Pd2Si-assisted crystallization of amorphous thin films at low temperature,” J. Appl. Phys. 85, 7180-7184 (1999).
    8. J. B. Lee, C. J. Lee, and D. K. Choi, “Influence of various metal elements on field aided lateral crystallization of amorphous silicon films,” Jpn. J. Appl. Phys. 40, 6177-6181 (2001).
    9. T. J. King and K. C. Saraswat, “Polycrystalline silicon-germanium thin-film transistors,” IEEE Trans. Electron Devices, 41, 1581-1591 (1994).
    10. C. W. Hwang, M. K. Ryu, and K. B. Kim, “Solid phase crystallization of amorphous Si1-xGex films deposited on SiO2 by molecular beam epitaxy,” J. Appl. Phys. 77, 3042-3047 (1995).
    11. J. Olivares, A. Rodriguez, J. Sangrador, T. Rodriguez, C. Ballesteros, and A. Kling, “Solid-phase crystallization of amorphous SiGe films deposited by LPCVD on SiO2 and glass,” Thin Solid Films, 337, 51-54 (1999).
    12. J. Olivares, P. Martin, A. Rodriguez, J. Sangrador, T. Jimenez, and T. Rodriguez, “Raman spectroscopy study of amorphous SiGe films deposited by low pressure chemical vapor deposition and polycrystalline SiGe films obtained by solid-phase crystallization,” Thin Solid Films, 358, 56-61 (2000).
    13. A. Rodriguez, T. Rodriguez, J. Olivares, and J. Sangrador, “Nucleation site location and its influence on the microstructure of solid-phase crystallized SiGe films,” J. Appl. Phys. 90, 2544-2552 (2001).
    14. O. H. Roh, W. J. Yun, and J. K. Lee, “Variation of spin densities and the solid-phase crystallization of amorphous Si1-xGex:H films,” J. Appl. Phys. 90, 2786-2791 (2001).
    15. H. Kanno, I. Tsunoda, A. Kenjo, T. Sadoh, and M. Miyao, “Ge-fraction-dependent metal-induced lateral crystallization of amorphous Si1-xGex (0□x□1) on SiO2,” Appl. Phys. Lett. 82, 2148-2150 (2003).
    16. C. H. Yu, P. H. Yeh, S. L. Cheng, L. J. Chen, and L. W. Cheng, “Metal-induced crystallization of amorphous Si1-xGex by rapid thermal annealing,” Thin Solid Films, 469/470, 356-360 (2004).
    17. M. Gjukic, M. Buschbeck, R. Lechner, and M. Stutzmann, “Aluminum-induced crystallization of amorphous silicon-germanium thin films,” Appl. Phys. Lett. 85, 2134-2136 (2004).
    18. T. J. King and K. Saraswat, “A low-temperature (<550 oC) silicon-germanium MOS thin film transistor technology for large area electronics,” IEDM Technical Digest, 567-570 (1991).
    19. N. Tanaka and M. Kawahara, “Time-resolved high-resolution transmission electron microscopy and high-angle annular dark field scanning transmission electron microscopy of metal-mediated crystallization of amorphous germanium films,” Mater. Sci. Eng. A, 312, 25-30 (2001).

    Chapter 9 References

    1. M. A. T. Izmajlowicz, A. J. Flewitt, W. I. Milne, and N. A. Morrison, “Directional nickel-induced field aided lateral crystallization of amorphous silicon,” J. Appl. Phys. 94, 7535-7541 (2003).
    2. J. Jang, J. Y. Oh, S. K. Kim, Y. J. Choi, S. Y. Yoon, and C. O. Kim, “Electric-field-enhanced crystallization of amorphous silicon,” Nature, 395, 481-483 (1998).
    3. S. H. Park, S. I. Jun, K. S. Song, C. K. Kim, and D. K. Choi, “Field aided lateral crystallization of amorphous silicon thin film,” Jpn. J. Appl. Phys. 38, L108-L109 (1999).
    4. A. Khakifirooz, S. Mohajerzadeh, and S. Haji, “Field-assisted metal-induced crystallization of amorphous silicon films,” J. Vac. Sci. Technol. A19, 2453-2455 (2001).
    5. J. Gu, S. Y. Chou, N. Yao, H. Zandbergen, and J. K. Farrer, “Single-crystal Si formed on amorphous substrate at low temperature by nanopatterning and nickel-induced lateral crystallization,” Appl. Phys. Lett. 81, 1104-1106 (2002).
    6. Y. Liu, M. D. Deal, K. C. Saraswat, and J. D. Plummer, “Single-crystalline Si on insulator in con fined structures fabricated by tow-step metal-induced crystallization of amorphous Si,” Appl. Phys. Lett. 81, 4634-4636 (2002).
    7. K. Kempa, B. Kimbal, J. Rybczynski, Z. P. Huang, P. F. Wu, D. Steeves, M. Sennett, M. Giersig, D. V. G. L. N. Rao, D. L. Carnahan, D. Z. Wang, J. Y. Lao, W. Z. Li, and Z. F. Ren, “Photonic crystals based on periodic arrays of aligned carbon nanotubes,” Nano Lett. 3, 13-18 (2003).
    8. C. G. Jin, W. F. Liu, C. Jia, X. Q. Xiang, W. L. Cai, L. Z. Yao, and X. G. Li, “High-filling, large-area Ni nanowire arrays and the magnetic properties,” J. Crystal Growth 258, 337-341 (2003).
    9. Y. Wu, J. Xiang, C. Yang, W. Lu, and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature, 430, 61-65 (2004).
    10. C. A. Decker, R. Solanki, J. L. Freeouf, J. R. Carruthers, and D. R. Evans, “Directed growth of nickel silicide nanowires,” Appl. Phys. Lett. 84, 1389-1391 (2004).
    11. S. Ge, K. Jiang, X. Lu, Y. Chen, R. Wang, and S. Fan, “Orientation-controlled growth of single-crystal silicon-nanowire arrays,” Adv. Mater. 17, 56-61 (2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE