簡易檢索 / 詳目顯示

研究生: 張韋臻
Chang, Wei Chen
論文名稱: 鐵氧體的導磁係數張量特性分析
Characterization of the permeability tensors for ferrites in a bias magnetic field
指導教授: 張存續
Chang, Tsun Hsu
口試委員: 戴明鳳
Tai, Ming Fong
金重勳
Chin, Chung Hsun
張士欽
Chang, Shih Chin
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 59
中文關鍵詞: 鐵氧體導磁係數張量
外文關鍵詞: ferrite, permeability tensor
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鐵氧體相關的元件發展在近幾年來越來越廣泛,例如單向器、環型器與高密度的磁記錄介質,隨著這些元件日益發展,分析鐵氧體在微波頻段的電磁特性也日益重要。
      在本論文中,我們將鐵氧體放置在方波導管內,並且在方波導的短邊方向外加磁場。由於鐵氧體的導磁係數為張量型式,本徵模式(Eigenmode)下的場型將會與空波導管的形式不同,此場型的偏移使得入射的電磁波穿過鐵氧體時,在空氣與鐵氧體的介面上為了滿足邊界條件激發高次模,產生模式效應(Modal effect)。這些因為場型的偏移所伴隨的模式效應將會影響電磁波穿過材料的S參數,所以分析此模式效應的過程是相當重要的,因此在本論文中我們致力於分析及模擬電磁波與鐵氧體的交互作用並探討其中的意義。我們分析TEm0模式在此系統下的行為,包括色散關係,場型分佈。在取得本徵模式的特性後,我們利用此場型分佈解出在鐵氧體與空氣介面上的穿透反射,並分析其中的模式效應。分析完這些基本特性後,我們更進一步解出真實實驗會得到的穿透反射。在經過一連串的分析後並使用模擬軟體HFSS來驗證我們推導的結果,此理論結果與模擬結果相當吻合,奠定了我們未來發展量測或是設計元件極佳的基礎。


    Ferrite materials biased under DC magnetic field have been intensely studied for the past decades due to their wide applications in microwave region, such as isolator, circulator, and high-density magnetic recording media. The magnetic property (tensor-form permeability) of the biased ferrites must be clearly characterized for designing and further applications.
    In this study, we insert the bulk under-test ferrite into a rectangular waveguide. The whole system is biased by a uniform DC magnetic field parallel to short edge of the rectangular waveguide. The permeability of the loaded ferrite will strongly modulate the eigenmodes’ dispersions, making their field distributions deviate from their counterparts under the case without a bias field. The changes of eigenmodes’ field distributions under the bias field further imply that the strong modal effect would occur as the guided wave transmits through the air-ferrite interfaces. How those eigenmodes jointly satisfy boundary conditions intricately relates to their scattering parameters (necessary for retrieving ferrite characteristics), and so understanding the modal coupling process is of vital importance.
    In this work, we exactly analyze the behaviors of TEm0 modes, including the dispersions and field distributions in a rectangular waveguide loaded with ferrite material and biased by a DC magnetic field. Based on these eigenmodes’ properties, the transmission and reflection for the EM wave (TE 10 mode) passing through the ferrite loaded in the rectangular waveguide can be also analyzed. These solutions could be further employed to retrieve the permeability tensor of the under-test ferrite material as long as the overall transmission and reflection measured by the experiment are provided.

    摘要 I Abstract II 致謝 III 內文目錄 IV 圖目錄 VI 第一章 緒論 1 1.1 鐵氧體簡介 1 1.2 典型的鐵氧體 1 1.3 鐵氧體的應用 2 1.4 研究動機 2 1.5 量測系統 3 1.6 分析流程 5 第二章 鐵磁性材料的基本特性 7 2.1 電子在鐵氧體內的行為 7 2.2 飽和磁化量與居禮溫度 9 2.3 導磁係數張量 12 2.4 損耗的影響 13 2.5 自然共振頻 15 第三章 理論推導 16 3.1 本徵模式推導 16 3.2 單一介面穿透反射推導 22 3.3 雙邊介面多重反射推導 26 第四章 模擬分析 35 4.1 導磁率特性 35 4.2 本徵模式分析 37 4.3 單一介面穿透反射分析 42 4.4 雙邊介面穿透反射分析 49 4.5 量測操作流程 54 第五章 結論 55 參考文獻 56

    [1] J.D. Jackson, Classical Electrodynamics, 3rd ed.
    [2] D.J. Griffiths, Introduction to Electrodynamics, 3rd ed.
    [3] David M. Pozar, Microwave Engineering, 4th ed.
    [4] K. A. Korolev, S. Chen, and M. N. Afsar, “ Complex magnetic permeability and dielectric permittivity of ferrites in millimeter waves, ” IEEE Trans. Magn. 44, 435-437 (2008).
    [5] G. B. Song, J. J. Jiang, X. Y. Wang, Z. M. Jin, X. Lin, G. H. Ma, and S. X. Cao, “ Selective excitation of spin resonance in orthoferrite PrFeO3 with impulsive polarized terahertz radiation, ” J. Appl. Phys. 114, 243104(2013).
    [6] M. N. Afsar, K. M. Lee, Y. Wang, and K. Kocharyan, “ Measurements of complex permittivity and permeability of common ferrimagnets at millimeter waves, ” IEEE Trans. Magn. 40, 2826-2828 (2004).
    [7] A. Bahadoor, Y. Wang, and M. N. Afsar. “ Complex permittivity and permeability of barium and strontium ferrite powders in X, KU, and K-band frequency ranges, ” J. Appl. Phys. 97, 10F105 (2005).
    [8] M. N. Afsar, I. I. Tkachov, and K. N. Kocharyan, “ A novel W-band spectrometer for dielectric measurements, ” IEEE Trans. Microw. Theory Tech. 48, 2637-2643 (2000).
    [9] K. A. Korolev, L. Subramanian, and M. N. Afsar, “ Complex permittivity and permeability of strontium ferrites at millimeter waves, ” J. Appl. Phys. 99, 08F504 (2006).
    [10] J. E. Lezaca, P. Queffelec, and A. Chevalier, “ Broadband permeability measurement method for ferrites at any magnetization state: direct problem, ” Int. J. Microw. Wirel. Technol. 3, 289 (2011).
    [11] A. Chevalier, J. Cortes, J. Lezaca, and P. Queffelec, “ Broadband permeability measurement method for ferrites at any magnetization state: Experimental results, ” J. Appl. Phys. 114, 174904 (2013).
    [12] L. Chao and M. N. Afsar, “ Size dependent ferromagnetic resonance and magnetic anisotropy of hexagonal barium and strontium ferrite powders,” J. Appl. Phys. 113, 17E154 (2013).
    [13] K. N. Kocharyan, M. N. Afsar, and I. I. Tkachov, “ Millimeter-wave magnetooptics: New method for characterization of ferrites in the millimeter-wave range, ” IEEE Trans. Microwave Theory Tech. 47, 2636 (1999).
    [14] P. Quéffélec, M. Le Floc'h, and P. Gelin, “ Nonreciprocal cell for the broadband measurement of tensorial permeability of magnetized ferrites: Direct problem, ” IEEE Trans. Microw. Theory Tech. 47, 390-397 (1999).
    [15] Nader, Chadi, et al. “ Characterization of ferrimagnetic and dielectric materials with a rectangular waveguide—method, limits of validity, ” J. Appl. Phys. 290, 90-93 (2005).
    [16] Němec, H., et al. “ Independent determination of the complex refractive index and wave impedance by time-domain terahertz spectroscopy, ” Optics communications 260, 175-183 (2006).
    [17] N. Al-Moayed, M. N. Afsar, U. A. Khan, S. McCooey, M. Obol, “ Nano ferrites microwave complex permeability and permittivity measurements by T/R technique in waveguide, ” IEEE Trans. Magn. 44, 1768 (2008).
    [18] S. Mallégol, P. Quéffélec, M. Le Floc’h, and P. Gelin, “ Theoretical and experimental determination of the permeability tensor components of magnetized ferrites at microwave frequencies, ” IEEE Trans. Magn. 39, 2003 (2003).
    [19] D. K. Ghodgaonkar, V. V. Varadan, and V. K. Varadan, “ Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies, ” IEEE Trans. Instrum. Meas. 39, 387 (1990).
    [20] D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, “ Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients, ” Phys. Rev. B 65, 195104 (2002).
    [21] H. Nemec, C. Kadlec, F. Kadlec, P. Kuzel, R. Yahiaoui, U.-C. Chung, C. Elissalde, M. Maglione, and P. Mounaix, “ Resonant magnetic response of TiO2 microspheres at terahertz frequencies, ” Appl. Phys. Lett. 100, 061117 (2012).
    [22] D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, “ Electromagnetic parameter retrieval from inhomogeneous metamaterials, ” Phys. Rev. E 71, 036617 (2005).
    [23] Castro, J., et al. “ Synthesis and characterization of low-loss Fe 3 O 4-PDMS magneto-dielectric polymer nanocomposites for RF applications, ” Wireless and Microwave Technology Conference (WAMICON), 2014 IEEE 15th Annual. IEEE, (2014).
    [24] A. Verma, A.K. Saxena, D.C. Dube, “ Microwave permittivity and permeability of ferrite–polymer thick films, ” J. Magn. Magn. Mater. 263, 228 (2003).
    [25] M. R. Meshram, N. K. Agrawal, B. Sinha, and P. S. Misra, “ Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber, ” J. Magn. Magn. Mater. 271, 207 (2004)
    [26] E. F. Schloemann, “ Microwave behavior of partially magnetized ferrites, ” J. Appl. Phys. 41, 204 (1970).
    [27] S. Zhang, Y. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “ Negative refractive index in chiral metamaterials, ” Phys. Rev. Lett. 102, 023901 (2009).
    [28] J. Lezaca, P. Queffelec, and A. Chevalier, “ Generalized Measurement Method for the Determination of the Dynamic Behavior of Magnetic Materials in Any Magnetization State, ” IEEE Trans. Magn. 46, 1687 (2010).
    [29] P. Gelin and P. Queffelec, “ Generalized permeability tensor model: Application to barium hexaferrite in a remanent state for self-biased circulators, ” IEEE Trans. Magn. 44, 24–31 (2008).
    [30] Yen, T. J. et al, “ Terahertz magnetic response from artificial materials, ” Science 303, 1494–1496 (2004).
    [31] T. Koschny, P. Markos, D. Smith, and C. Soukoulis, “ Resonant and antiresonant frequency dependence of the effective parameters of metamaterials, ” Phys. Rev. E 68, 65602 (2003).
    [32] Shih-Jui Huang, “Material characterization at microwave frequency, ” Physics Department, National Tsing Hua University (2013).
    [33] Wei-Chen Lin , “A new approach for simultaneous characterization of the material’s permittivity and permeability by THz time-domain spectroscopy, ” Physics Department, National Tsing Hua University (2014).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE