簡易檢索 / 詳目顯示

研究生: 林盈瑩
Ying-Ying Lin
論文名稱: 毛細管電泳技術應用於奈米級顆粒的粒徑與形狀分析
Size and shape separation of nanometer-sized particles by capillary electrophoresis
指導教授: 吳劍侯
Chien-Hou Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2004
畢業學年度: 92
語文別: 英文
論文頁數: 126
中文關鍵詞: 毛細管電泳技術金,銀奈米粒子大小形狀PEOSDS
外文關鍵詞: Capillary electrophoresis, gold nanoparticles, size separation, poly(ethylene oxide), SDS, silver nanoparticles
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的主要目的為利用毛細管電泳技術建立分離方法並對快速鑑定奈米等級粒子大小與形狀之可行性進行評估。論文由兩部分組成,第一部分為以毛細管電泳技術建立金奈米粒子粒徑大小的分析方法。探討其分離機制,並應用於以微波加熱方法製備的真實樣品。第二部分為以毛細管電泳技術建立不同形狀之銀奈米粒子分離技術,配合線上濃縮概念,建立動態酸鹼梯度掃集毛細管微胞濃縮技術以分離不同形狀之銀奈米粒子。
    添加陰離子界面性劑SDS與線性聚合物PEO於緩衝液中,利用毛細管電泳技術能成功的分離與鑑定不同大小的金奈米粒子。在粒徑5到40奈米範圍,遷移時間和粒徑大小有很好的線性關係存在,且遷移時間的再現性佳(CV<4.1%),可用以推估出真實樣品粒徑大小。添加SDS於緩衝液中對於分離效果有明顯的提升,應是基於其吸附於粒子表面藉以改變電荷體積比之故;添加PEO也有助於分離,應是由於其與粒子間的作用力而使得分離效果提升。分析真實樣品,比對所建立之分析方法得到結果與以掃描式電子顯微鏡觀測統計後得到粒徑大小之分佈結果,兩者有相當好的一致性。
    第二部分為建立動態酸鹼梯度掃集毛細管微胞濃縮技術並應用於分離不同形狀之銀奈米粒子。研究所用之銀奈米粒子經掃描式電子顯微鏡觀測統計後,證實其為棒狀與球狀奈米粒子以27比73之混合溶液。由於所使用之奈米粒子差異不大,在本研究中,利用酸鹼值與導電度梯度以及SDS濃度差,使奈米粒子能有效的被集中並達到分離。於此,探討線上濃縮的分離機制並推估銀奈米粒子與SDS之作用機制應不同於金奈米粒子。本實驗建立之分析方法的遷移再現性良好(CV<1.8 %),最後利用分段收集法收集被分離之奈米粒子,並以穿透式電子顯微鏡確認其形狀與大小,證實本方法確實可行。


    The feasibility of separation of nanoscale metal particles either by size or shape with capillary electrophoresis (CE) is demonstrated. This dissertation is composed of two main parts (i) size separation of gold nanoparticles and (ii) shape separation of silver nanoparticles. In the first part, a separation method by adding anionic surfactant and polymer was established. The separation mechanism of surfactant and polymer was probed. In the second part, a dynamic pH gradient sweeping on-line concentration was build up and separation of different shaped silver nanoparticles can be achieved. The separation can be confirmed with fraction collection to take TEM images.
    CE with anionic surfactant, sodium dodecyl sulfate (SDS), and linear polymer, poly (ethylene oxide) (PEO), can successfully separate gold nanoparticles with different sizes. This work demonstrates the feasibility of employing CE to separate gold particles in nanoscale regimes. After addition of SDS and PEO to the buffer, particles with different sizes were separated simultaneously. Parameters including buffer concentration, SDS concentration, percentage of PEO, pH value, and applied voltage are investigated to obtain the optimized separation resolution. The separation mechanism of PEO and the effect of SDS are also discussed here. Most important of all, a linear relationship between the migration time and particle size is obtained in the particle diameters range of 5 – 40 nm. The coefficient of variation of migration time for 5 nm and 20nm gold nanoparticles are 3.5 and 4.1 %, respectively. Real samples made by microwave heating method have been analyzed and the analytical results of CE show a good fit with the statistical size distribution from SEM images. This study provides an alternative method for rapid separation and characterization of nanoscale gold with different particle sizes.
    This study also demonstrated the feasibility of CE use to separate silver nanoparticles with different shapes. Herein, a dynamic pH gradient-sweeping on-line concentration method had been established and employed to separate silver nanoparticles. The concentration of SDS and pH difference between leading and terminal buffer were optimized. More than 12 runs showed a very similar(CV<1.8 % in migration time)on-line concentration effect. Besides, the mechanism of the dynamic pH gradient-sweeping is proposed in this study. To confirm the effect of this separation method, a fraction collection is used to collect the separated silver nanoparticles and observe by TEM. From TEM images, spherical nanoparticles are successfully separated by CE and the particles of 2nd peak in electropherogram were collected.

    Abstract(Chinese)…………………………………… i Abstract(English)…………………………………… ii Acknowledgement……………………………………… iv Content Index ………………………………………….. vi Figures Index………………………………………….... xi Table Index……………………………………………... xv Abbreviation and Symbol……………………………… xvi Chapter 1 General Introduction………………………… 1 1.1 The history of capillary electrophoresis Technique......... 2 1.2 The separation theory of capillary electrophoresis…….. 4 1.2.1 Electrophoresis………………………………………. 4 1.2.2 Electroosmotic flow and zeta potential……………… 5 1.3 The separation mode of capillary electrophoresis……... 8 1.3.1 Capillary zone electrophoresis………………………. 8 1.3.2 Micellar electrokinetic chromatography…………….. 9 1.3.3 Capillary gel electrophoresis………………………… 10 1.4 Selectivity and the use of additives……………………. 13 1.4.1 Buffer selection……………………………………… 14 1.4.2 Buffer pH…………………………………………….. 15 1.4.3 Surfactants…………………………………………… 15 1.4.4 Chiral selectors………………………………………. 16 1.4.5 Temperature………………………………………….. 17 1.4.6 Sample injection width………………………………. 18 1.5 Reference……………………………………………… 20 Chapter 2 Experimental Section………………………… 22 2.1 Apparatus……………………………………………… 23 2.2 Capillary Rinsing Protocols……………………………. 24 2.3 Procedure………………………………………………. 25 2.3.1 Buffer preparation…………………………………… 25 2.3.2 Sample……………………………………………….. 25 2.4 Calculation…………………………………………….. 25 2.4.1 Resolution……………………………………………. 25 2.4.2 Mobility and migration time…………………………. 26 2.4.3 Injection volume……………………………………... 27 2.5 Sample Injection Method……………………………… 29 2.6 Buffer Replenishment and Set…………………………. 30 2.7 Reference………………………………………………. 31 Chapter 3 Size Separation of Gold Nanoparticles by Capillary Electrophoresis................................ 33 3.1 Introduction…………………………………….……… 34 3.2 Experimental section…………………………………... 38 3.2.1 Apparatus………………….......................................... 38 3.2.2 Chemicals and reagents……………………………… 40 3.2.3 Nanoparticles samples……………………………….. 40 3.2.4 Preparation of PEO solution……………..................... 41 3.2.5 Buffers……………………………………………….. 42 3.3 Results and discussion………………………………… 42 3.3.1 Optimization of this separation method……………... 42 3.3.1.1 Co-additive finding………………………………… 42 3.3.1.2 Optimization of pH value………………………….. 57 3.3.1.3 Separation optimization……………………………. 60 3.3.1.4 Optimization of working condition……………….. 61 3.3.1.5 Summary of separation method optimization……... 67 3.3.2 Real sample analysis………………………………… 71 3.4 Conclusion……………………………………………... 75 3.5 Reference………………………………………………. 76 Chapter 4 Shape Separation of Silver Nanoparticle by Capillary Electrophoresis…................... 80 4.1 Introduction……………………………………………. 81 4.2 Experimental section…………………………………… 84 4.2.1 Apparatus…………………………………………….. 84 4.2.2 Reagents……………………………………………... 84 4.2.3 Silver nanoparticles…………………………………. 84 4.2.3.1 Preparation…………………………………………. 84 4.2.3.2 Sample description ………………………………... 85 4.2.4 Buffers……………………………………………… 86 4.2.5 Fraction collection………………………………….. 86 4.3 Results and discussion…………………………………. 87 4.3.1 Co-additive optimization……………………………. 87 4.3.2 Separation parameters optimization…......................... 90 4.3.2.1 Concentration of SDS……………………………… 90 4.3.2.2 Effect of buffer type and pH value………………… 93 4.3.2.3 Concentration of CAPS…………………………… 95 4.3.3 On- line concentration……………………………… 96 4.3.3.1 On-line concentration by pH gradient…………… 98 4.3.3.2 On-line concentration by sweeping………………. 103 4.3.3.3 Effect of dynamic pH gradient-sweeping………... 106 4.3.4 Proposed mechanism of stacking…………………... 107 4.3.4.1 Mechanism of dynamic pH-gradient……………... 107 4.3.4.2 Mechanism of sweeping………………………….. 109 4.3.4.3 Mechanism of dynamic pH gradient-sweeping…... 110 4.3.5 Separation Results………………………………….. 110 4.4 Reproducibility……………………………………….. 112 4.5 Conclusion….…………………………………............ 112 4.6 Reference……………………………………………... 114 Chapter 5 Conclusion.……………………………………... 119 5.1 Conclusion.………………………………………….. 120 5.2 Suggestions and Future Perspectives………………… 122 5.3 Reference…………………………………………….. 124 The Author…………………………………………….. 125 Figure Index Figure 2-1 Hardware overview of the Lsuerlabs’ Butler replenishment system.…………………………………………... 24 Figure 3-1 UV spectrum of five standards in running buffer.………….. 39 Figure 3-2 The relationship between concentration of SDS and migration time.…………………………………………….. 45 Figure 3-3 Effect of buffer concentration on the migration time of gold particles………………………………………….. 46 Figure 3-4 Electropherograms of 5nm and 20nm mixture separated with different percentage of PEO 8,000,000……….................. 51 Figure 3-5 The effect of different pH and comparison of different percentage of PEO………………………………….. 54 Figure 3-6 Electropherograms of 5nm and 20nm mixture separated with different molecular weights of PEO.……………………. 55 Figure 3-7 Relationship between the migration time and particle diameter.. 56 Figure 3-8 Effect of pH on (a) Rs and (b) migration time on Au nanoparticles............................................................. 59 Figure 3-9 Comparison of Rs with six different buffer compositions..…... 60 Figure 3-10 Influences of temperature on Rs and current and comparison of their electropherograms.………………………….. 63 Figure 3-11 Effect of voltage on (i) Rs and (ii) maximum current.………. 64 Figure 3-12 Electropherograms of using segmental filling method to separate the mixture of 5nm and 20nm standards.………… 67 Figure 3-13 Standard electropherograms of 5 standards........................ 69 Figure 3-14 The SEM images of a mixture of 20nm and 40nm gold nanoparticles……………………………………... 69 Figure 3-15 Electropherograms of 30nm and 40nm gold nanoparticles.…. 70 Figure 3-16 Standard curve.…………………………................ 70 Figure 3-17 SEM images and statistic size distribution graphs of real samples.…………………………………………. 72 Figure 3-18 Electropherograms of four real samples under optimized separation condition.……………………………... 73 Figure 3-19 The correlation of CE and SEM determined particle size.…… 74 Figure 4-1 UV/VIS absorption spectrum of silver nanoparticle sample used thoughout this study. ………………………….......... 85 Figure 4-2 SEM image of the silver nanoparticle sample used in this study. 86 Figure 4-3 Effect of adding Brij35 as co-additive to the running buffer….. 88 Figure 4-4 Effect of adding PEG as co-additive to the running buffer…… 89 Figure 4-5 Effect of adding PEO as co-additive to the running buffer…… 89 Figure 4-6 Electropherogram obtained for silver nanoparticle separation at different concentration of SDS.………………………... 91 Figure 4-7 UV spectrum of 0.01mM silver nanoparticle at pH 10 using different SDS concentration…………………………. 92 Figure 4-8 Electropherograms of 5nm gold nanoparticle at different concentration of SDS.………………………….......... 92 Figure 4-9 Electropherograms of silver nanoparticle with different buffer composition.……………………………………… 93 Figure 4-10 Electropherograms of silver nanoparticle at different pH value..................................................................... 94 Figure 4-11 Electropherograms of different concentration of CAPS.......... 95 Figure 4-12 Schematic illustration of capillary buffer system…………. 99 Figure 4-13 Effect of different pH at inlet and outlet buffer.………....... 100 Figure 4-14 Comparison of different pH gradient method...................... 102 Figure 4-15 Effect of different injection volume……………………. 102 Figure 4-16 Comparison of the electropherograms with different pH gradient.………………………………………… 103 Figure 4-17 Effect of SDS gradients.…………………………….. 105 Figure 4-18 Comparison of different SDS concentration of outlet and flush vial.…………………………………………….. 106 Figure 4-19 Schematic overview of proposed mechanism of dynamic pH-gradient sweeping of silver nanoparticles.…………… 108 Figure 4-20 TEM images of separated silver nanoparticles collect by fraction collection method.………………………….. 111 Figure 4-21 Injection volume test……………………………….. 113 Figure 4-22 Effect of stacking or not…………………………….. 113 Table Index Table 3-1 Altered parameters and effects of adding amines to improve the separation efficiency.……………………………….. 43 Table3-2 Conditions tested to increase the separation efficiency with segmental filling…………………………………… 66 Table 3-3 Size distribution calculated from electropherogram with standard curve……………………………………... 73 Table 3-4 Comparison between mean of two methods and random error with 95% confidence level…………………………… 75 Table 4-1 Conditions tested to study pH-gradient effect.……………... 99 Table 5-1 The optimum conditions and results of this thesis…….......... 120

    Balchunas, A. T.; Spaniak, M. J. Gradient elution for micellar electrokinetic capillary chromatography. Anal. Chem. 1988, 60, 617-621.
    Camilleri, P. Capillary electrophoresis:/theory and practice, second edition, CRC Press: Boca Raton, Fla. 1998.
    Chankvetadze, B. Capillary electrophoresis in chiral analysis. John Wiley: New York, 1997.
    Cottet, H.; Gareil, P. J. Electrophoretic behavior of fully sulfonated polystyrenes in capillaries filled with entangled polymer solutions. J. Chromatogr. A 1997,772, 369-384.
    Heiger, D. An introduction: High performance capillary electrophoresis. Agilent Technologies: Germany, 2000.
    Kuhn, R.; Kuhn, S. H. Capillary electrophoresis:/principles and practice, Springer-Verlag: Germany, Berlin, 1993.
    Lunte, S. M.; Radzik, D. M. Pharmaceutical and Biomedical applications of capillary electrophoresis. Oxford: U.S.A., New York, 1996.
    McKibbin, P. B.; Chen, D. D. Y. Selective focusing of catecholamines and weakly acidic compounds by capillary electrophoresis using a dynamic pH junction. Anal. Chem. 2000, 72, 1242-1252.
    Okada, T. Polyethers in inorganic capillary electrophoresis. J. Chromatogr. A 1999, 834, 73-87.
    Weinberger, R. Practical capillary electrophoresis. Boston : Academic Press, 1993.
    Bello, M. S. Electrolytic modification of a buffer during a capillary electrophoresis run. J. Chromatogr. A 1996, 744, 81-91.
    Cottet, H.; Gareil, P. Electrophoretic behavior of fully sulfonated polystyrenes in capillaries filled with entangled polymer solutions, J. Chromatogr. A 1997, 772, 369-384.
    Heiger, D. An introduction High performance capillary electrophoresis. Agilent Technologies: Germany, 2000.
    Jones, H. K.; Ballou, N. E. Separations of chemically different particles by capillary electrophoresis. Anal. Chem. 1990, 62, 2484-2490.
    User manual, programmable injector for capillary electrophoresis, PrinCE Autosampler, Prince Technologies:Nertherland, TC Emmen, 1999.
    Burgess, I.; Jeffrey, C. A.; Cai, X.; Szymanski, G.; Galus, Z.; Lipkowski, J. Direct visualization of the potential-controlled transformation of hemimicellar aggregates of dodecyl sulfate into a condensed monolayer at the Au(111) electrode surface. Langmuir 1999, 15, 2607-2616.
    Chang, H. T.; Yeung, E. S. Poly(ethyleneoxide) for high-resolution and high-speed separation of DNA by capillary electrophoresis. J. Chromatogr. B 1995, 669, 113-123.
    Chang, S. S.; Wang, C.R.C.金屬奈米粒子的吸收光譜, Chemistry 1998, 56, 209-222.
    Cottet, H.; Gareil, P. Electrophoretic behaviour of fully sulfonated polystyrenes in capillaries filled with entangled polymer solutions. J. Chromatogr. B 1997, 772, 369-384.
    Fisher, C. H.; Kenndler, E. Analysis of colloids: IX. Investigation of the electrical double layer of colloidal inorganic nanometer-particles by size-exclusion chromatography. J. Chromatogr. A 1997, 773, 179-187.
    Félidj, N.; Lévi, G.; Pantigny, J.; Aubard, J. A new approach to determine nanoparticle shape and size distributions of SERS-active gold-silver mixed colloids. New J. Chem. 1998, 7,725-732.
    Guttman, A.; Horvath, J.; Cooke, N. Influence of temperature on the sieving effect of different polymer matrixes in capillary SDS gel electrophoresis of proteins. Anal. Chem. 1993, 65, 199-203.
    Heller, C. Separation of double-stranded and single-stranded DNA in polymer solutions: I. Mobility and separation mechanism. Electrophoresis 1999, 20, 1962-1977.
    Heller, C. Principles of DNA separation with capillary electrophoresis. Electrophoresis 2001, 22,629-643.
    Hubert, S. J., Slater G. W. Theory of capillary electrophoretic separations of DNA-polymer complexes. Electrophoresis 1995, 16, 2137-2142.
    Hubert, S. J., Slater G. W. Viovy, J. L., Theory of capillary electrophoretic separation of DNA using ultradilute polymer solutions. Macromolecules 1996, 29, 1006-1009.
    Hwang, W. M.; Lee, C. Y.; Boo, D. W.; Choi, J. G.. Separation of nanoparticles in different sizes and compositions by capillary electrophoresis. Bull. Korean Chem. Soc. 2003, 24, 5, 684-686.
    Iki, N.; Yeung, E. S. Non-bonded poly (ethylene oxide) polymer-coated column for protein separation by capillary electrophoresis. J. Chromatogr. A 1996, 731, 273-282.
    Johnson, S. R.; Evans, S. D.; Brydson, R. Influence of a terminal functionality on the physical properties of surfactant-stabilized gold nanoparticles. Langmuir 1998, 14, 6639-6647.
    Kuhn, R.; Kuhn, S. H. Capillary Electrophoresis: Principles and practice, Springer Laboratory: Germany, Berlin Heidelberg, 1993.
    Lambert, W. J.; Middleton, D. L. pH hysteresis effect with silica capillaries in capillary zone electrophoresis. Anal. Chem. 1990, 62, 1585.
    Li, D.; Fu, S.; Lucy, C. A. Prediction of electrophoretic mobilities. 3. Effect of ionic strength in capillary zone electrophoresis. Anal. Chem. 1999, 71, 687-699.
    Link, S.; Sayed, M. A. E. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 1999, 103, 8410-8426.
    Liu, F. K.; Ker C. J.; Chang, Y. C.; Ko, F. H.; Chu, T. C.; Dai, B. T. Microwave heating for the preparation of nanometer gold particles. Jpn. J. Appl. Phys. 2003, 42, 4152-4158.
    Liu, F. K.; Wei, G. T. Adding sodium dodecylsulfate to the running electrolyte enhances the separation of gold nanoparticles by capillary electrophoresis. Anal. Chim. Acta 2004, 510, 77–83.
    Lopez, N.; NØrskov, J. K. Catalystic CO oxidation by a gold nanoparticle: A density functional study. J. Am. Chem. Soc. 2002, 124, 11262-11263.
    Mclaughlin, G. M.; Anderson, K. W.; Hauffe, D. K. In High-Performance capillary electrophoresis: theory, techniques, and applications, Khaledi, M. G., Eds.; Wiley-Interscience publications: Canada, 1998.
    Oana, H.; Masubuchi, Y.; Yoshikawa, K.; Khokhlov, A.R.; Doi, M. Periodic motion of large DNA molecules during steady field gel electrophoresis. Macromolecules 1994, 27, 6061-6067.
    Radko, S. P.; Stastna, M.; Chrambach, A. Size-dependent electrophoretic migration and separation of liposomes by capillary zone electrophoresis in electrolyte solutions of various ionic strengths. Anal. Chem. 2000, 72, 5955-5960.
    Sau, T. K.; Pal, A.; Pal, T. Size regime dependent catalysis by gold nanoparticles for the reduction of Eosin. J. Phys. Chem. B, 2001, 105, 9266-9272.
    Schnabel, U.; Fisher, C. H.; Kenndler, E. Characterization of colloidal gold nanoparticles according to size by capillary zone electrophoresis. J. Microcolumn Sep. 1997, 9, 7, 529-534.
    Shaffer, J. S. Dynamics of confined polymer melts: Topology and entanglement. Macromolecules 1996, 29, 1010-1013.
    Siebrands, T.; Giersig, M.; Mulvaney, P.; Fischer, C.H. Steric exclusion chromatography of nanometer-sized gold particles. Langmuir 1993, 9, 2297-2300.
    Slot, J.W.; Geuze, H. A new method of preparing gold probes for multiple-labeling cytochemistry. J. Eur. J. Cell Biol. 1985, 38, 87-93.
    Smith, S. C.; Khaledi, M. G.. Optimization of pH for the separation of organic acids in capillary zone electrophoresis. Anal. Chem. 1993, 65, 193-198.
    Todorov, T. I; Carmejane, O. D.; Walter, N. G.; Morris, M. D. Capillary electrophoresis of RNA in dilute and semidilute polymer solutions. Electrophoresis 2001, 22, 2442-2447.
    Tseng, W. L.; Lin, Y. W.; Chang, H. T. Improved separation of microheterogeneities and isoforms of proteins by capillary electrophoresis using segmental filling with SDS and PEO in the background electrolyte. Anal. Chem. 2002, 74, 4828-4834.
    Wei, G. T.; Liu, F. K. Separation of nanometer gold particles by size exclusion chromatography. J. Chromatogr. A 1999, 836, 253-260.
    Wei, G. T.; Liu, F. K.; Wang, C. C. R. Shape separation of nanometer gold particles by size-exclusion chromatography. Anal. Chem. 1999, 71, 2085-2091.
    Wei, G. T.; Wang, C. C. R.; Liu, F. K.; Chang, S. S. Separation of nanostructured gold particles by capillary zone electrophoresis. J. Chin. Chem. Soc. 1998, 45, 47-52.
    Belder, D.; Elke, K.; Husmann, H. Influence of pH-value of methanolic electrolytes on electroosmotic flow in hydrophilic coated capillaries. J. Chromatogr. A 2000, 868, 63-71.
    Benkhira, A.; Bagassi, M.; Lachhab, T.; Rudatsikira, A.; Reibei, L.; Francois, J. Interactions of ethylene oxide/methylene oxide copolymers with sodium dodecyl sulphate. Polymer 2000, 41, 7415-7425.
    Cao, Y. W.; Jin, R.; Mirkin, C. A. DNA-Modified core-shell Ag/Au nanoparticles. J. Am. Chem. Soc. 2001, 123, 7961-7962.
    Caswell, K. K.; Bender, C. M.; Murphy, C. Seedless, surfactant less wet chemical synthesis of silver nanowires. Nano Lett. 2003, 3, 667-669.
    Chang, H. T.; Yeung, E. S. Poly(ethyleneoxide) for high-resolution and high-speed separation of DNA by capillary electrophoresis. J. Chromatogr. B 1995, 669, 113-123.
    Coronado, E. A.; Schatz, G. C. Surface plasmon broadening for arbitrary shape nanoparticles: A geometrical probability approach. J. Chem. Phy. 2003, 119, 7, 3926-3934.
    Emory, S. R.; Haskins, W. E.; Nie, S. Direct observation of size-dependent optical enhancement in single metal nanoparticles. J. Am. Chem. Soc. 1998, 120, 8009-8010.
    Félidj, N.; Aubard, J.; Lévi, G. Discrete dipole approximation for ultraviolet–visible extinction spectra simulation of silver and gold colloids J. Chem. Phy. 1999, 111, 1195-1208.
    Félidj, N.; Lévi, G.; Pantigny, J.; Aubard, J. A new approach to determine nanoparticle shape and size distributions of SERS-active gold-silver mixed colloids. New J. Chem. 1998, 7,725-732.
    Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G.; Natan, M. J. Self-Assembled Metal Colloid Monolayers: An approach to SERS substrates. Science 1995, 267, 5204, 1629-1632.
    Ramsden, J.; Lvov, Y. M.; Decher, G. Determination of optical constants of molecular films assembled via alternate polyion adsorption. Thin Solid Films 1995, 254, 246-251.
    Huang, C. C.; Hsieh, M. M.; Chiu, T. C.; Lin, Y. C.; Chang, H. T. Maximization of injection volumes for DNA analysis in capillary electrophoresis. Electrophoresis 2001, 22, 4328-4332.
    Kim. J. B.; Otsuka, K.; Terabe, S. On-line sample concentration in micellar electrokinetic chromatography with cationic micelles in a coated capillary. J. Chromatogr. A 2001, 912, 343-352.
    Krivánková, L.; Bocek, P. Synergism of capillary isotachophoresis and capillary zone electrophoresis. J. Chromatogr. B 1997, 689, 13-34.
    Lee, H. J. ; Yeo, S. Y. ; Jeong, S. H. Antibacterial effect of nanosized silver colloidal solution on textile fabrics. J. Mater. Sci. 2003, 38, 2199-2204.
    Liu, F. K.; Huang, P. W.; Chang, Y. C.; Ko, F. H.; Chu, T. C. Microwave-assisted synthesis of silver nanorods. J. Mater. Res. 2004, 19, 2, 469-473.
    Liu, Y.; Kuhr, W. G. Separation of double-and single-stranded DNA restriction fragments: Capillary electrophoresis with polymer solutions under alkaline conditions. Anal. Chem. 1999, 71, 1668-1673.
    Lunte, S. M.; Radzik, D. M. Pharmaceutical and biomedical applications of capillary electrophoresis, Oxford: U.S.A., New York, 1996.
    McKibbin, P. B.; Bebault, G. M.; Chen, D. D. Y. Velocity-difference induced focusing of nucleotides in capillary electrophoresis with a dynamic pH junction. Anal. Chem. 2000, 72, 1729-1735.
    McKibbin, P. B.; Chen, D. D. Y. Selective focusing of catecholamines and weakly acidic compounds by capillary electrophoresis using a dynamic pH Junction. Anal. Chem. 2000, 72, 1242-1252.
    McKibbin, P. B.; Otsuka, K.; Terabe, S. On-line focusing of Flavin derivatives using dynamic pH junction-sweeping capillary dlectrophoresis with laser-induced fluorescence detection. Anal. Chem. 2002, 74, 3736-3743.
    Mock, J. J.; Barbic, M.; Smith, D. R.; Schultz, D. A.; Schultz, S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J.Chem. Phys. 2002, 116, 15, 6755-6759.
    Morteza G. K. Micelles as separation media in high-performance liquid chromatography and high-performance capillary electrophoresis: overview and perspective. J. Chromatogr. A 1997, 780, 3-40.
    Palmer, J.; Munro, N. J.; Landers, J. P. A universal concept for stacking neutral analytes in micellar capillary electrophoresis. Anal. Chem. 1999, 71, 1679-1687.
    Palmer, P.; Burgi, D. S.; Munro, N. J.; Landers. J. P. Electrokinetic injection for stacking neutral analytes in capillary and microchip electrophoresis. Anal. Chem. 2001, 73, 725-731.
    Phayre, A. N.; Farfano, H. M. V.; Hayes, M. A. Effects of pH gradients on liposomal charge states examined by capillary electrophoresis. Langmuir 2002, 18, 6499-6503.
    Quirino, J. P.; Terabe, S. Approaching a million-fold sensitivity increase in capillary electrophoresis with direct ultraviolet detection: cation-selective exhaustive injection and sweeping. Anal. Chem. 2000, 72, 1023-1030.
    Quirino, J. P.; Terabe, S. Exceeding 5000-fold concentration of dilute analytes in micellar electrokinetic chromatography. Science 1998, 282, 465-468.
    Sastry, M.; Mayya, K. S.; Bandyopadhyay, K. pH dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles. Colloid Surface A-Physicochem. Eng. Asp. 1997, 127, 221-228.
    Shiraishi, Y.; Toshima, N. Oxidation of ethylene catalyzed by colloidal dispersions of poly (sodium acrylate)-protected silver nanoclusters. Colloid Surf. A- Physicochem. Eng. Asp. 2000, 169, 59-66.
    Sondi,I.; Goia, D. V.; Matijevi, E. Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. J. Colloid Interface Sc. 2003, 260, 1, 75-81.
    Sosa, I. O.; Noguez, C.; Barrera, R. G. Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B 2003, 107, 6269-6275.
    Taleb, A.; Petit, C.; Pileni, M. P. Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: a way to 2D and 3D self-organization.Chem. Mater. 1997, 9, 950-959.
    Wang, S. J.; Tseng, W. L.; Lin, Y. W.; Chang, H. T. On-line concentration of trace proteins by pH junctions in capillary electrophoresis with UV absorption detection. J. Chromatogr. A, 2002, 979, 261-270.
    Wei, W.; Xue, G..; Yeung, E. S. One-step concentration of analytes based on dynamic change in pH in capillary zone electrophoresis. Anal. Chem. 2002, 74, 934-940.
    Zhang, C. X.; Thormann, W. Head-column field-amplified sample stacking in binary system capillary electrophoresis: a robust approach providing over 1000-fold sensitivity enhancement., Anal. Chem. 1996, 68, 2523-2532.
    Zhang, Y.; Zhu, J.; Zhang, L.; Zhang, W. High-efficiency on-line concentration technique of capillary electrochromatography. Anal. Chem. 2000, 72, 5744-5747.
    Zhu, L. Y.; Tu, C.; Lee, H. K. On-line concentration of acidic compounds by anion-selective exhaustive injection-sweeping-micellar electrokinetic chromatography. Anal. Chem. 2002, 74, 5820-5825.
    Zhu, L. Y.;Lee. H. K. Field-amplified sample injection combined with water removal by electroosmotic flow pump in acidic buffer for Analysis of phenoxy acid herbicides by capillary electrophoresis. Anal. Chem. 2001, 73, 3065-3072.
    Lu, L; Sun, G.; Zhang, H.; Wang, H.; Xi, S.; Hu, J.; Tian, Z.; Chen, R. Fabrication of core-shell Au-Pt nanoparticle film and its potential application as catalysis and SERS substrate. J. Mater. Chem. 2004, 14, 1005-1009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE