研究生: |
江紀賢 Chiang, Chi-Hsien |
---|---|
論文名稱: |
利用超音波霧化噴塗法生長氧化矽薄膜 The Development of Ultrasonic Spray for Growth of Silicon oxide Film |
指導教授: |
陳福榮
Chen, Fu-Rong |
口試委員: |
林澤勝
孫文檠 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 63 |
中文關鍵詞: | 超薄氧化層 、超音波噴塗技術 、鈍化層 |
外文關鍵詞: | ultra-thin oxide, ultrasonic Spray technique, passivation layer |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氧化矽薄膜在太陽能電池領域以及IC產業中都有非常重要的應用,在工業中最被廣為使用的氧化層生長方式為熱氧化法,這種製程必須使用爐管設備。隨著半導體元件尺寸日漸縮小我們所需要的氧化層也越來越薄,爐管製程所能製備的最薄的氧化層厚度為5nm。
本文探討如何利用超音波震盪霧化噴塗系統,將具有強氧化能力前驅物雙氧水(hydrogen peroxide)震盪霧化再以攜帶氣體攜帶至加熱中的電子級矽晶圓基板上,汽化的雙氧水蒸氣進一步與矽反應形成氧化矽薄膜。此技術能以簡單的設備在非真空環境下進行氧化矽薄膜生長,不需要昂貴的設備,就能夠控制生長厚度在1.3-2.7nm左右的超薄氧化矽薄膜。將超薄氧化矽應用於介面鈍化時,添加0.1M濃度的鹽酸溶液進行噴塗氧化,由載子存活週期得知使鈍化效果提升35%。本製程最大的特點為製程的連續性,在噴塗氧化層生成以後,不需任何試片處理就可以進行下一道製程,相當符合太陽能電池量產的需求,具有良好的發展性
另外,本研究將噴塗氧化層應用設計的在金屬-絕緣體-半導體元件上,並從電流-電壓曲線結果得知元件起始電壓約在0.9V。由元件結果得知超音波霧化噴塗成長的氧化矽薄膜具有運用來製備太陽能電池元件的潛力。
The silicon oxide film has very important applications in the field of solar cells as well as the IC industry. The oxide layer deposition method which is the most widely used in industry is the thermal oxidation method. However, this process needs to use the costly furnace and tube equipment. As the decreasing scale of semiconductor device, we need the thinner oxide film for the process. The limit thickness of the oxide layer with the furnace processing is 5nm.
In this research we develop the ultrasonic spray technique and use hydrogen peroxide solution as the precursor for the growth of silicon oxide film. This technique can be applied in a non-vacuum environment, and the oxide thickness can be controlled in the range of 1.31-2.7nm. The spraying oxide film can enhance the carrier lifetime about 35%, and the in-line process is the most competitive specialty.
In addition, we can use our spraying oxide film to produce a MIS junction. We can find out the potential of spraying oxide film application in solar cell manufacture industry.
62
參考文獻
[1] Navigant Consulting (2011/01)
[2] Photon International, ITRI/MCL (2010/05)
[3] PVNET European Roadmap for PV R&D ,ITRI/IEK (2009/08)
[4] MA. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 39)”, Prog. Photovolt: Res. Appl. 2012; 20:P12–20,(2011)
[5] J. Zhao, A. Wang, MA. Green, “High-efficiency PERL and PERT silicon solar and MCZ cells on FZ and MCZ substrates”, Solar Energy Materials & Solar Cells, 65,P.429-435, (2001)
[6] S. H. Lee, “Development of High-Efficiency Silicon Solar Cells for Commercialization”
,Journal of the Korean Physical Society, Vol. 39, No. 2, August 2001, pp. 369-373
[7] M. A. Green, “The Path to 25% Silicon Solar Cell Efficiency: History of Silicon Cell
Evolution,” Progress in Photovoltaics, vol. 17, pp. 183-189, May 2009.
[8] Dauwe S, Mittelsta dt L,Metz A,Hezel R. Progress in photovoltaics 200210:P271-278.
[9] Hikaru Kobayashi,a) Asuha, Osamu Maida, Masao Takahashi, and Hitoo Iwasa, “Nitric
acid oxidation of Si to form ultrathin silicon dioxide layers with a low leakage current density”, JOURNAL OF APPLIED PHYSICS, VOLUME 94, NUMBER 11.
[10] J. John1, V. Prajapati1, B. Vermang1, A. Lorenz1, C. Allebe, A. Rothschild, L. Tous, A. Uruena, K. Baert, and J. Poortmans, “Evolutionary process development towards next generation crystalline silicon solar cells: a semiconductor process toolbox application”,
EPJ Photovoltaics 3, 35005 (2012)
63
[11] J. C. Viguie and J. Spitz, “CHEMICAL VAPOR-DEPOSITION AT LOW-
TEMPERATURE,” Journal of the Electrochemical Society, vol. 122, pp. 585-588, 1975.
[12] D. Neamen, An Introduction to Semiconductor Devices: McGraw-Hill, 2006. [13]施敏,”半導體元件物理與製作技術”
[14]B.E.Deal and A.S.Grove, “General Relationship for the Thermal Oxidation of Silicon”,
J.Appl.Phys., 36,3770(1965)
[15]Hong Xiao. “Introduction to Semiconductor Manufacturing Technology”
[16] Fuhe Li, Marjorie K. Balazs, Presented in the 21st Annual Semiconductor Pure Water and
Chemical Conference (SPWCC), Santa Clara, California, March 2002.
[17] Fuhe Li, Marjorie K. Balazs, and Scott Anderson, “Effects of Ambient and Dissolved
Oxygen Concentration in Ultrapure Water on Initial Growth of Native Oxide on a
Silicon (100) Surface”,
[18] A. Nakaruk and C. C. Sorrell, "Conceptual model for spray pyrolysis mechanism: fabrication and annealing of titania thin films," Journal of Coatings Technology and Research, vol. 7, pp. 665-676, Sep 2010.
[19] http://www.quatek.com.cn/products.php?lang=tw&CID=320德技科技股份有限公司
[20]http://www.texample.net/media/tikz/examples/PDF/principle-of-x-ray-photoelectron-spectroscopy-xps.pdf
[21]http://zh.wikipedia.org/zh-hk/X射線光電子能譜
[22]施敏,”半導體元件物理學”
[23] 2nd.Edition, "The Chemisty of explosives”,J.A.khavan