簡易檢索 / 詳目顯示

研究生: 江紀賢
Chiang, Chi-Hsien
論文名稱: 利用超音波霧化噴塗法生長氧化矽薄膜
The Development of Ultrasonic Spray for Growth of Silicon oxide Film
指導教授: 陳福榮
Chen, Fu-Rong
口試委員: 林澤勝
孫文檠
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2012
畢業學年度: 101
語文別: 中文
論文頁數: 63
中文關鍵詞: 超薄氧化層超音波噴塗技術鈍化層
外文關鍵詞: ultra-thin oxide, ultrasonic Spray technique, passivation layer
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化矽薄膜在太陽能電池領域以及IC產業中都有非常重要的應用,在工業中最被廣為使用的氧化層生長方式為熱氧化法,這種製程必須使用爐管設備。隨著半導體元件尺寸日漸縮小我們所需要的氧化層也越來越薄,爐管製程所能製備的最薄的氧化層厚度為5nm。
    本文探討如何利用超音波震盪霧化噴塗系統,將具有強氧化能力前驅物雙氧水(hydrogen peroxide)震盪霧化再以攜帶氣體攜帶至加熱中的電子級矽晶圓基板上,汽化的雙氧水蒸氣進一步與矽反應形成氧化矽薄膜。此技術能以簡單的設備在非真空環境下進行氧化矽薄膜生長,不需要昂貴的設備,就能夠控制生長厚度在1.3-2.7nm左右的超薄氧化矽薄膜。將超薄氧化矽應用於介面鈍化時,添加0.1M濃度的鹽酸溶液進行噴塗氧化,由載子存活週期得知使鈍化效果提升35%。本製程最大的特點為製程的連續性,在噴塗氧化層生成以後,不需任何試片處理就可以進行下一道製程,相當符合太陽能電池量產的需求,具有良好的發展性
    另外,本研究將噴塗氧化層應用設計的在金屬-絕緣體-半導體元件上,並從電流-電壓曲線結果得知元件起始電壓約在0.9V。由元件結果得知超音波霧化噴塗成長的氧化矽薄膜具有運用來製備太陽能電池元件的潛力。


    The silicon oxide film has very important applications in the field of solar cells as well as the IC industry. The oxide layer deposition method which is the most widely used in industry is the thermal oxidation method. However, this process needs to use the costly furnace and tube equipment. As the decreasing scale of semiconductor device, we need the thinner oxide film for the process. The limit thickness of the oxide layer with the furnace processing is 5nm.
    In this research we develop the ultrasonic spray technique and use hydrogen peroxide solution as the precursor for the growth of silicon oxide film. This technique can be applied in a non-vacuum environment, and the oxide thickness can be controlled in the range of 1.31-2.7nm. The spraying oxide film can enhance the carrier lifetime about 35%, and the in-line process is the most competitive specialty.
    In addition, we can use our spraying oxide film to produce a MIS junction. We can find out the potential of spraying oxide film application in solar cell manufacture industry.

    目錄 摘要 ............................................................................................................................................. i Abstract ..................................................................................................................................... ii 致謝 .......................................................................................................................................... ivi 目錄 ........................................................................................................................................... iv 表目錄 ....................................................................................................................................... vi 圖目錄 ...................................................................................................................................... vii 第一章 緒論 .............................................................................................................................. 1 1.1前言 .............................................................................................................................. 1 1.2研究動機 ...................................................................................................................... 9 第二章 基礎理論與文獻回顧 ................................................................................................ 10 2.1矽晶體結構 ................................................................................................................ 10 2.2熱氧化 ........................................................................................................................ 11 2.2.1矽熱氧化機制 ................................................................................................. 12 2.2.2乾氧化與濕氧化的比較 ................................................................................. 15 2.2.3乾、濕氧化製程設備 ..................................................................................... 15 2.3超薄氧化層 ................................................................................................................ 18 2.3.1原生氧化層探討 ............................................................................................. 19 2.4 超音波霧化原理 ....................................................................................................... 21 第三章 實驗方法與步驟 ........................................................................................................ 23 v 3.1實驗材料與藥品 ........................................................................................................ 23 3.2 實驗設備 ................................................................................................................... 24 3.3 實驗流程 ................................................................................................................... 28 3.3.1試片製備 ......................................................................................................... 30 3.3.2雙氧水超薄氧化層的噴塗 ............................................................................. 30 3.3.3純雙氧水摻雜微量鹽酸溶液的噴塗 ............................................................. 30 3.3.4噴塗氧化層作為二氧化鈦鈍化層探討 ......................................................... 30 3.3.5金屬-絕緣體-半導體元件製備....................................................................... 31 3.4薄膜分析、量測使用之儀器 .................................................................................... 32 3.4.1 N&K薄膜測厚儀 (N & K Analyzer) ............................................................ 32 3.4.2 微波光電導衰減量測(microwave PCD) ....................................................... 32 3.4.3 X光光電子能譜儀(X-ray Photoelectron Spectrometer, XPS) ....................... 33 3.4.4 電容-電壓量測(Capacitance-Voltage measurement) .................................... 33 第四章 實驗結果與討論 ........................................................................................................ 37 4.1雙氧水噴塗氧化結果與機制討論 ............................................................................ 37 4.2摻雜鹽酸的氧化層噴塗與其機制 ............................................................................ 48 4.3噴塗氧化層作為鈍化層的性質 ................................................................................ 53 4.4.超薄氧化層製備金屬-絕緣體-半導體接面 ............................................................. 58 第五章 結果與未來展望 ........................................................................................................ 61 參考文獻 .................................................................................................................................. 62 vi 表目錄 表3.1 實驗藥品目錄表 .......................................................................................................... 24 表4.1 超音波震盪雙氧水於加熱基板之噴塗情況 .............................................................. 38 表4.2 不同噴塗時間所生長氧化層厚度整理表 .................................................................. 44 表4.3 添加不同濃度的鹽酸至雙氧水溶液中所霧化噴塗生長的氧化層厚度 .................. 48 表4.4 化學鍵結能表 .............................................................................................................. 51 表4.5 不同氧化矽薄膜生長製程堆疊二氧化鈦之生命週期量測值 .................................. 54 表4.6 添加不同鹽酸濃度噴塗氧化層與浸泡硝酸氧化層界面缺陷與載子生命週期比...55 表4.7 噴塗與未噴塗氧化矽薄膜之界面缺陷比較表……………………………………...58 vii 圖目錄 圖1.1 近年來太陽能電池發電總量成長示意圖 .................................................................. 4 圖1.2 各類市售太陽能電池市場佔有率 .............................................................................. 5 圖1.3 預測未來各種太陽能電池所佔比例 .......................................................................... 5 圖1.4 PERC太陽能電池結構示意圖 ................................................................................... 6 圖1.5 PERL太陽能電池結構示意圖 ................................................................................... 6 圖1.6 化學鈍化示意圖 .......................................................................................................... 7 圖1.7 物理鈍化示意圖 .......................................................................................................... 7 圖1.8 預測未來太陽能電池基材厚度趨勢 .......................................................................... 8 圖2.1 矽晶體鑽石結構示意圖 ............................................................................................ 10 圖2.2 矽晶體主要晶格平面(a)100面(b)110面(c)111面示意圖 ...................................... 11 圖2.3 熱氧化成長二氧化矽界面移動示意圖 .................................................................... 11 圖2.4 (a)二氧化矽的基本結構,(b)石英晶體結構二維空間示意圖,(c)非晶結構二氧化矽二維空間示意圖 .................................................................................................................. 12 圖2.5 熱氧化基本模型示意圖 ............................................................................................ 13 圖2.6 兩種氧化速率區域示意圖 ........................................................................................ 15 圖2.7 直線型速率常數與溫度變化之關係 ........................................................................ 16 圖2.8 拋物線型速率常數與溫度變化之關係 .................................................................... 17 圖2.9 電阻式加熱氧化爐管的橫截面示意圖 .................................................................... 18 圖2.10 Si/SiO2界面橫切面示意圖 .................................................................................... 19 viii 圖2.11 不同種類晶圓在大氣以及超純淨水中原生氧化層生長厚度示意圖 .................... 20 圖2.12 不同種類晶圓在室溫(濕度38%)大氣下原生氧化層厚度隨時間增長示意圖 ..... 20 圖2.13 噴霧式熱裂解法對不同基板溫度及起始霧滴大小之沉降示意圖 ........................ 22 圖3.1 超音波震盪霧化器以及反應腔體與噴塗氧化系統示意圖 .................................... 25 圖3.2 石英退火爐管示意圖 ................................................................................................ 26 圖3.3 元件製備光罩示意圖 ................................................................................................ 26 圖3.4 氧化矽薄膜噴塗之實驗流程圖 .............................................錯誤! 尚未定義書籤。 圖3.5 微波光電導衰減量測機台示意圖 ............................................................................ 33 圖3.6 光電子產生原理示意圖 ............................................................................................ 29 圖3.7 XPS量測系統示意圖 ................................................................................................ 33 圖3.8 電壓-電流量測元件二極體特性示意圖 ................................................................... 34 圖4.1 分別利用浸泡硝酸、雙氧水以及霧化噴塗雙氧水生成氧化層的FTIR 光譜 .... 41 圖4.2 霧化噴塗雙氧水生成氧化層試片的C(1s)光電子能譜 .......................................... 42 圖4.3 霧化噴塗雙氧水生成氧化層試片的O(1s)光電子能譜 .......................................... 43 圖4.4 霧化噴塗雙氧水生成氧化層試片的Si(2p)光電子能譜 ......................................... 43 圖4.5 霧化噴塗雙氧水生成氧化層的厚度隨時間變化圖 ................................................ 46 圖4.6 超音波震盪霧化噴塗雙氧水成長氧化矽薄膜示意圖 ............................................ 46 圖4.7 超音波噴塗氧化矽薄膜的生長機制示意圖 ............................................................ 47 圖4.8 不同噴塗時間與不同鹽酸添加量所生長的氧化層厚度比較 ................................ 49 圖4.9 噴塗雙氧水以及微量添加鹽酸的雙氧水溶液生長氧化層之光電子能譜 ............ 50 圖4.10 噴塗雙氧水及微量添加鹽酸的雙氧水溶液生長氧化層之Cl(2p)光電子能譜…..50 ix 圖4.11 利用噴塗生長氧化層TEM拍攝圖 .......................................................................... 52 圖4.12 不同生長氧化層方式之載子生命週期 .................................................................... 56 圖4.13 C-V量測曲線中斜率與界面缺陷之關係 .............................................................. 57 圖4.14 有噴塗氧化層以及無噴塗氧化層之試片C-V量測結果 ....................................... 57 圖4.15 噴塗與未噴塗氧化矽薄膜之缺陷降低示意圖 ........................................................ 58 圖4.16 金屬-絕緣體-半導體接面元件示意圖 ..................................................................... 59 圖4.17 金屬-絕緣體-半導體元件的電流-電壓曲線(log尺度)示意圖 ............................... 59 圖4.18 以超音波霧化噴塗生長氧化層志備MIS元件電流-電壓示意圖…………………60

    62
    參考文獻
    [1] Navigant Consulting (2011/01)
    [2] Photon International, ITRI/MCL (2010/05)
    [3] PVNET European Roadmap for PV R&D ,ITRI/IEK (2009/08)
    [4] MA. Green, K. Emery, Y. Hishikawa, and W. Warta, “Solar cell efficiency tables (version 39)”, Prog. Photovolt: Res. Appl. 2012; 20:P12–20,(2011)
    [5] J. Zhao, A. Wang, MA. Green, “High-efficiency PERL and PERT silicon solar and MCZ cells on FZ and MCZ substrates”, Solar Energy Materials & Solar Cells, 65,P.429-435, (2001)
    [6] S. H. Lee, “Development of High-Efficiency Silicon Solar Cells for Commercialization”
    ,Journal of the Korean Physical Society, Vol. 39, No. 2, August 2001, pp. 369-373
    [7] M. A. Green, “The Path to 25% Silicon Solar Cell Efficiency: History of Silicon Cell
    Evolution,” Progress in Photovoltaics, vol. 17, pp. 183-189, May 2009.
    [8] Dauwe S, Mittelsta dt L,Metz A,Hezel R. Progress in photovoltaics 200210:P271-278.
    [9] Hikaru Kobayashi,a) Asuha, Osamu Maida, Masao Takahashi, and Hitoo Iwasa, “Nitric
    acid oxidation of Si to form ultrathin silicon dioxide layers with a low leakage current density”, JOURNAL OF APPLIED PHYSICS, VOLUME 94, NUMBER 11.
    [10] J. John1, V. Prajapati1, B. Vermang1, A. Lorenz1, C. Allebe, A. Rothschild, L. Tous, A. Uruena, K. Baert, and J. Poortmans, “Evolutionary process development towards next generation crystalline silicon solar cells: a semiconductor process toolbox application”,
    EPJ Photovoltaics 3, 35005 (2012)
    63
    [11] J. C. Viguie and J. Spitz, “CHEMICAL VAPOR-DEPOSITION AT LOW-
    TEMPERATURE,” Journal of the Electrochemical Society, vol. 122, pp. 585-588, 1975.
    [12] D. Neamen, An Introduction to Semiconductor Devices: McGraw-Hill, 2006. [13]施敏,”半導體元件物理與製作技術”
    [14]B.E.Deal and A.S.Grove, “General Relationship for the Thermal Oxidation of Silicon”,
    J.Appl.Phys., 36,3770(1965)
    [15]Hong Xiao. “Introduction to Semiconductor Manufacturing Technology”
    [16] Fuhe Li, Marjorie K. Balazs, Presented in the 21st Annual Semiconductor Pure Water and
    Chemical Conference (SPWCC), Santa Clara, California, March 2002.
    [17] Fuhe Li, Marjorie K. Balazs, and Scott Anderson, “Effects of Ambient and Dissolved
    Oxygen Concentration in Ultrapure Water on Initial Growth of Native Oxide on a
    Silicon (100) Surface”,
    [18] A. Nakaruk and C. C. Sorrell, "Conceptual model for spray pyrolysis mechanism: fabrication and annealing of titania thin films," Journal of Coatings Technology and Research, vol. 7, pp. 665-676, Sep 2010.
    [19] http://www.quatek.com.cn/products.php?lang=tw&CID=320德技科技股份有限公司
    [20]http://www.texample.net/media/tikz/examples/PDF/principle-of-x-ray-photoelectron-spectroscopy-xps.pdf
    [21]http://zh.wikipedia.org/zh-hk/X射線光電子能譜
    [22]施敏,”半導體元件物理學”
    [23] 2nd.Edition, "The Chemisty of explosives”,J.A.khavan

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE