研究生: |
劉慶六 Liu, Ching-Liu |
---|---|
論文名稱: |
薄板於二維平行板間流作往復運動之流場研究 Flow around an Oscillating Thin Plate Immersed in a 2D Channel Flow |
指導教授: |
李雄略
Lee, Shong-Leih |
口試委員: |
陳志臣
Chen, Jyh-Chen 陳寒濤 Chen, Han-Taw |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 57 |
中文關鍵詞: | 計算流體力學 、零厚度 、平板 、週期擺動 |
外文關鍵詞: | CFD, zero thickness, flat plate, periodic vibration |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文採用隱式虛擬邊界法於非交錯性直角座標網格系統,模擬流體流經一片來回運動薄板之問題,由於此方法解決了零厚度平板之沉浸邊界和移動邊界問題,並搭配補綴網格的使用,使計算速度可大幅提升並保持答案之精確性。使用此方法在進行求解時,無須將薄板設定為有厚度的長方形,薄板在轉動時,網格也不需要隨著邊界的改變重新建立,並且成功模擬出來回運動薄板之流場,由模擬結果可獲得許多不同以往之想法。經由本文成功解決流體流經一片來回運動薄板之研究問題後,便可利用模擬所獲得的入口壓力之結果,判斷薄板擺放角度、流體雷諾數、平板間距和薄板擺動角速度對於薄板在二維平行板間流產生了多少的阻力。
Flow over an oscillating thin flat plate is solved with the implicit virtual boundary method in the present study. This method can not only solve the immersed boundary problem for a zero thickness flat plate accurately but also use a patch grid to reduce the calculating time and keep the accuracy at the same time. Furthermore, this method does neither assume the plate as rectangular geometries with thin thickness nor rebuild grid system with moving boundary when plate is rotating. Due to the successful simulation in this case, ideas different from the past can be gained. After solving the problem successfully, the entrance pressure may be got to predict how the drag varies with the angle of plate, Renold number, distance between two plates and angle velocity of vibration.
[1] M. R. Castelli, P. Cioppa and E. Benini, “Numerical Simulation of the Flow Field around a Vertical Flat Plate of Infinite Extent, ” World Academy of Science, Engineering and Technology, 6, pp.235-240 (2012).
[2] M. R. Castelli, P. Cioppa and E. Benini, “Numerical Simulation of the Flow Field around a 30° Inclined Flat Plate, ” World Academy of Science, Engineering and Technology, 6, pp.730-735(2012).
[3] J. Favier, C. Li, L. Kamps, A. Revell, J. O’Connor and C. Brucker, “The PELskin project—part I: fluid–structure interaction for a row of flexible flaps: a reference study in oscillating channel flow,” Meccanica, 52, pp.1767–1780 (2017).
[4] J. Van Kan, “A second-order accurate pressure correction scheme for viscous incompressible flow,” SIAM Journal on Scientific and Statistical Computing , 7, pp.870–891 (1986).
[5] W. X. Huang, S. J. Shin and H. J. Sung, “Simulation of flexible filaments in a uniform flow by the immersed boundary method,” Journal of Computational Physics, 226, pp.2206–2228 (2007).
[6] C. S. Peskin, “ Flow patterns around heart valves: A numerical method,” Journal of Computational Physics, 10, pp.252-271 (1972).
[7] C. S. Peskin and D. M. McQueen, “A three-dimensional computational method for blood flow in the heart: (I) immersed elastic fibers in a viscous incompressible fluid,” Journal of computational physics, 81, pp.372-405 (1989).
[8] D. M. McQueen and C. S. Peskin, “A three-dimensional computational method for blood flow inthe heart: (II) contractile fibers,” Journal ofcomputational physics, 82, pp.289-297 (1989).
[9] C. S. Peskin and D. M. McQueen, “Cardiac fluid dynamics,” Critical Reviews in Biomedical Engineering, 82, pp.451-459 (1992).
[10] J. De Hart, G.W.M. Peters, P.J.G. Schreurs, F.P.T. Baaijens, “A two-dimensional fluid-structure interaction model of the aortic value,” Journal of Biomechanics, 33, pp.1079-1088 (2000).
[11] R. van Loon, P. D. Anderson, J. de Hart and F. P. T. Baaijens, “A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves,” International Journal for Numerical Method in Fluids, 46, pp.533-544 (2004).
[12] S. L. Lee, G. S. Cyue and K. W. Chen , “Implicit Virtual Boundary Method for Moving Boundary Problem on Non-Staggered Cartesian Patch Grids,” Journal of Mechanics (2017).
[13] S. L. Lee, and R. Y. Tzong, “Artificial Pressure for Pressure-Linked Equation,” International Journal of Heat and Mass Transfer, 35, pp.2705-2716 (1992).
[14] S. L. Lee, “Weighting Function Scheme and Its Application on Multidimensional Conservation Equations,” International Journal of Heat and Mass Transfer, 32, pp. 2065-2073 (1989).
[15] S. L. Lee, “A strongly implicit solver for two-dimensional elliptic differential equations,” Numerical Heat Transfer, 16, pp.161-178 (1989).