簡易檢索 / 詳目顯示

研究生: 紀皓暐
Chi, Hao-Wei
論文名稱: 利用耗散粒子動力學模擬帶電荷三嵌段共聚物於水溶液中之自組裝行為
Dissipative Particle Dynamics Simulation of Self-Assembly Behaviors of Charged-Neutral Triblock Copolymer in Aqueous Solution
指導教授: 張榮語
口試委員: 許嘉翔
曾煥錩
王鎮杰
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 86
中文關鍵詞: 耗散粒子動力學帶電嵌段共聚物靜電作用形態變化
外文關鍵詞: Dissipative Particle Dynamics, Charged-Neutral Block Copolymer, Electrostatic Interaction, Morphological Change
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 帶電嵌段共聚物之應用層面非常廣泛,但在目前的文獻當中對於其奈米微結構仍非全然了解。因此本論文利用耗散粒子動力學模擬方法,來研究中性三嵌段共聚物與帶電三嵌段共聚物於水溶液中之自組裝行為,並探討在該系統下靜電作用力對於形態變化所造成的影響。同時藉由改變三嵌段共聚物之嵌段比例以及水溶液中之共聚物濃度,來觀察其形態變化。
    研究結果顯示,藉由調整嵌段比例以及共聚物濃度,能夠有效地控制其形態變化,有微胞、層板、柱狀、網狀等基本結構,而且在帶電系統中之共聚物確實能夠利用靜電作用力來誘導其形態轉變。不過在低濃度下之中性嵌段共聚物與帶電嵌段共聚物系統,一律都是以微胞結構呈現,但由於受靜電作用之影響,其微胞之聚集方式與大小會有所不同,因此可利用此方法來製備出尺寸更小之奈米微胞,藉以應用於藥物釋放、仿生材料等相關領域。


    The application of the charged-neutral triblock copolymer is extremely wide, but in the present reference for its nanostructure which is still not entirely understood. Therefore, we used dissipative particle dynamics simulation method to investigate the self-assembly behaviors of the neutral triblock copolymer as well as the charged-neutral triblock copolymer in aqueous solution, and discuss the effect of morphological changes by electrostatic interaction. And we also observed the morphologies by changing the composition of the triblock copolymer and the concentration of the copolymer in aqueous solution.
    The results show that by changing the composition of the copolymer and the concentration of the copolymer which can be effectively control the morphologies, such as micelle, lamellae, cylinder, net and so on. Indeed, we could make use of the electrostatic interaction to induce the morphological changes in the charged system. However, there are all micelle structures which at low concentrations in the neutral block copolymer system and charged block copolymer system. But due to the effect of electrostatic interaction, the size and the aggregation of micelle are different. Therefore, this method can be used to prepare a smaller size of the polymeric micelles, to be applied to drug delivery, biomimetic materials and other related fields.

    摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 耗散粒子動力學簡介 3 1.4 嵌段共聚物 5 第二章 文獻回顧 9 2.1 耗散粒子動力學模擬之文獻回顧 9 2.2 靜電作用力應用於耗散粒子動力學之文獻回顧 11 2.3 Charged-Neutral Block Copolymer之文獻回顧 13 2.4 嵌段共聚物溶液系統之文獻回顧 15 第三章 研究方法 17 3.1 耗散粒子動力學基本理論 17 3.1.1 耗散粒子動力學作用力場 19 3.1.2 運動方程式的數值積分方法 22 3.1.3 耗散粒子動力學模擬流程架構 23 3.1.4 週期性邊界 25 3.1.5 最小鏡像法 27 3.2 靜電作用力 28 3.3 Ewald Summation 29 3.4 徑向分佈函數 34 第四章 模擬系統架構驗證 35 4.1 耗散粒子動力學系統驗證 35 4.2 耗散粒子動力學雙嵌段共聚物系統驗證 37 4.3 耗散粒子動力學藥物釋放系統驗證 42 4.4 Ewald Summation數學式驗證 45 4.5 耗散粒子動力學靜電力系統驗證 47 第五章 結果與討論 49 5.1 模擬系統架構與參數設定 49 5.2 中性嵌段共聚物於水溶液中之形態研究 51 5.2.1 不同濃度之A1B10C1於水溶液中之形態 51 5.2.2 不同濃度之A2B8C2於水溶液中之形態 53 5.2.3 不同濃度之A3B6C3於水溶液中之形態 55 5.2.4 不同濃度之A4B4C4於水溶液中之形態 57 5.2.5 不同濃度之A5B2C5於水溶液中之形態 59 5.3 帶電嵌段共聚物於水溶液中之形態研究 61 5.3.1 不同濃度之A1B10C1於水溶液中之形態 61 5.3.2 不同濃度之A2B8C2於水溶液中之形態 63 5.3.3 不同濃度之A3B6C3於水溶液中之形態 65 5.3.4 不同濃度之A4B4C4於水溶液中之形態 67 5.3.5 不同濃度之A5B2C5於水溶液中之形態 69 5.4 帶電嵌段共聚物於水溶液中之徑向分佈函數 71 5.5 模擬系統之形態比較與統整 73 第六章 結論與未來展望 80 參考文獻 82

    1. Thurn-Albrecht, T., et al., Ultrahigh-density nanowire arrays grown in self-assembled diblock copolymer templates. Science, 2000. 290(5499): p. 2126-2129.
    2. Lee, J.I., et al., Highly aligned ultrahigh density arrays of conducting polymer nanorods using block copolymer templates. Nano Letters, 2008. 8(8): p. 2315-2320.
    3. Elabd, Y.A. and M.A. Hickner, Block Copolymers for Fuel Cells. Macromolecules, 2011. 44(1): p. 1-11.
    4. Hoogerbrugge, P.J. and J.M.V.A. Koelman, Simulating Microscopic Hydrodynamic Phenomena with Dissipative Particle Dynamics. Europhysics Letters, 1992. 19(3): p. 155-160.
    5. Soto-Figueroa, C., et al., Mesoscopic simulation of metastable microphases in the order-order transition from gyroid-to-lamellar states of PS-PI diblock copolymer. Chemical Physics Letters, 2008. 460(4-6): p. 507-511.
    6. Espanol, P. and P. Warren, Statistical-Mechanics of Dissipative Particle Dynamics. Europhysics Letters, 1995. 30(4): p. 191-196.
    7. Groot, R.D. and P.B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic simulation. Journal of Chemical Physics, 1997. 107(11): p. 4423-4435.
    8. Hamley, I.W., The Physics of Block Copolymers. Oxford University Press: Oxford, 1998.
    9. Bates, F.S. and G.H. Fredrickson, Block copolymers - Designer soft materials. Physics Today, 1999. 52(2): p. 32-38.
    10. 陳信龍,"高分子之自組裝奈米結構",THE CHINESE CHEM. SOC., TAIPEI, 2004. 62: p. 455~460.
    11. Mogi, Y., et al., Tricontinuous Morphology of Triblock Copolymers of the Abc Type. Macromolecules, 1992. 25(20): p. 5412-5415.
    12. Gido, S.P., et al., Observation of a Nonconstant Mean-Curvature Interface in an Abc Triblock Copolymer. Macromolecules, 1993. 26(10): p. 2636-2640.
    13. Posocco, P., M. Fermeglia, and S. Pricl, Morphology prediction of block copolymers for drug delivery by mesoscale simulations. Journal of Materials Chemistry, 2010. 20(36): p. 7742-7753.
    14. Groot, R.D. and T.J. Madden, Dynamic simulation of diblock copolymer microphase separation. Journal of Chemical Physics, 1998. 108(20): p. 8713-8724.
    15. Matsen, M.W. and M. Schick, Stable and Unstable Phases of a Diblock Copolymer Melt. Physical Review Letters, 1994. 72(16): p. 2660-2663.
    16. Groot, R.D., Electrostatic interactions in dissipative particle dynamics-simulation of polyelectrolytes and anionic surfactants. Journal of Chemical Physics, 2003. 118(24): p. 11265-11277.
    17. Gonzalez-Melchor, M., et al., Electrostatic interactions in dissipative particle dynamics using the Ewald sums. Journal of Chemical Physics, 2006. 125(22).
    18. Ibergay, C., P. Malfreyt, and D.J. Tildesley, Electrostatic Interactions in Dissipative Particle Dynamics: Toward a Mesoscale Modeling of the Polyelectrolyte Brushes. Journal of Chemical Theory and Computation, 2009. 5(12): p. 3245-3259.
    19. Moffitt, M., K. Khougaz, and A. Eisenberg, Micellization of ionic block copolymers. Accounts of Chemical Research, 1996. 29(2): p. 95-102.
    20. Riess, G., Micellization of block copolymers. Progress in Polymer Science, 2003. 28(7): p. 1107-1170.
    21. Stuart, M.A.C., et al., Assembly of polyelectrolyte-containing block copolymers in aqueous media. Current Opinion in Colloid & Interface Science, 2005. 10(1-2): p. 30-36.
    22. Park, M.J. and N.P. Balsara, Phase behavior of symmetric sulfonated block copolymers. Macromolecules, 2008. 41(10): p. 3678-3687.
    23. Wang, X.J., et al., Morphologies of block copolymers composed of charged and neutral blocks. Soft Matter, 2012. 8(11): p. 3036-3052.
    24. Deng, M.G., et al., Conformational behaviors of a charged-neutral star micelle in salt-free solution. Physical Chemistry Chemical Physics, 2010. 12(23): p. 6135-6139.
    25. Goswami, M., et al., Breakdown of Inverse Morphologies in Charged Diblock Copolymers. Journal of Physical Chemistry B, 2011. 115(13): p. 3330-3338.
    26. Moughton, A.O., M.A. Hillmyer, and T.P. Lodge, Multicompartment Block Polymer Micelles. Macromolecules, 2012. 45(1): p. 2-19.
    27. Li, X.J., et al., Shape Transformations of Membrane Vesicles from Amphiphilic Triblock Copolymers: A Dissipative Particle Dynamics Simulation Study. Macromolecules, 2009. 42(8): p. 3195-3200.
    28. Jiang, T., et al., Structural Evolution of Multicompartment Micelles Self-Assembled from Linear ABC Triblock Copolymer in Selective Solvents. Langmuir, 2011. 27(10): p. 6440-6448.
    29. 邱佑宗,"耗散粒子動力計算方法簡介及應用",工業材料雜誌,(2004)。
    30. PeriodicBoundaryConditions, http://isaacs.sourceforge.net/phys/pbc.html.
    31. 陳建彣,"以耗散粒子動力學模擬探討水分子的靜電感應作用對相態變化之影響",國立清華大學化學工程研究所碩士論文,2011。
    32. Ewald, P.P., The "reciprocal lattice" in structure theory. Zeitschrift Fur Kristallographie, 1921. 56(2): p. 129-156.
    33. Toukmaji, A.Y. and J.A. Board, Ewald summation techniques in perspective: A survey. Computer Physics Communications, 1996. 95(2-3): p. 73-92.
    34. Spohr, E., Effect of electrostatic boundary conditions and system size on the interfacial properties of water and aqueous solutions. Journal of Chemical Physics, 1997. 107(16): p. 6342-6348.
    35. Haile, J.M., Molecular Dynamics Simulation. John Wiley & Sons, Inc., 1992.
    36. RadialDistributionFunction, http://en.wikipedia.org/wiki/Radial_distribution_function.
    37. Yeh, I.C. and M.L. Berkowitz, Ewald summation for systems with slab geometry. Journal of Chemical Physics, 1999. 111(7): p. 3155-3162.
    38. Zhao, Y., et al., Dissipative particle dynamics study on the multicompartment micelles self-assembled from the mixture of diblock copolymer poly(ethyl ethylene)-block-poly(ethylene oxide) and homopolymer poly(propylene oxide) in aqueous solution. Polymer, 2009. 50(22): p. 5333-5340.
    39. 曾品濂,"應用耗散粒子動力學模擬探討介面分子的鏈段比例於不同非極性溶劑比例之相態變化",國立清華大學化學工程研究所碩士論文,2012。
    40. 劉亦瑋,"利用耗散粒子動力學模擬不同分子形狀的三元性分子之平衡相態衍變",國立清華大學化學工程研究所碩士論文,2012。
    41. 羅予祥,"耗散粒子動力學模擬奈米棒狀顆粒與雙嵌段共聚物共混於剪切流場下之相態變化",國立清華大學化學工程研究所碩士論文,2012。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE