簡易檢索 / 詳目顯示

研究生: 曾宜鈞
Tseng, Yi-Chun
論文名稱: 低成本精密位移計設計與開發
Design and Development of a Low-Cost Precision Displacement Sensor
指導教授: 曹哲之
Tsao, Che-Chih
口試委員: 宋震國
Sung, Cheng-Kuo
蕭德瑛
Shaw, Dein
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 83
中文關鍵詞: 精密位移計撓性機構放大機構霍爾元件
外文關鍵詞: Precision displacement sensor, Flexure hinge, Amplification mechanism, Hall sensor
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的為發展低成本、精度至次微米等級之位移感測器。此裝置概念係將欲量測之次微米位移透過一機械式位移放大器放大百倍至10微米等級後,再以市面便宜常見之Honeywell線性霍爾傳感器讀取放大後的數值。由於此概念尚未應用在現今的感測器技術上,故本研究從概念發想開始著手並選用合適機構,再透過ANSYS模擬出最適配幾何後,製作出基本原型,最後透過渦電流位移計與光學槓桿量測方法驗證其位移放大之可行性與重複精度,可得到準確度0.7 μm,重複精度0.4 μm以及解析度0.1 μm。


    This research aims to develop a new precision displacement sensor at sub-micron accuracy level with a cost of a fraction of those of existing commercial devices. The basic concept of the new sensor system is to apply a mechanical mechanism to magnify a sub-micron displacement to be measured by about 100 times so that the magnified displacement becomes within the measurement range of a low cost Hall sensor. Several magnifying mechanisms were considered. Two of them were tested and one was selected as the final approach. Detailed designs were developed and prototypes constructed through several design cycles, assisted with solid mechanics analysis and simulation. Measurements by eddy current sensors and an optical lever method were used as references. The displacement repeatability of the final magnifying mechanism prototype was found to be under 0.4 m. A Honeywell-SS495A Hall sensor with an accuracy of about 10 m was used to measure the magnified displacement. The combined sensor prototype has an accuracy of at least 0.7 μm, a repeatability under 0.4 μm and a resolution of 0.1μm.

    目錄 摘要 I Abstract II 目錄 IV 圖目錄 VI 表目錄 IX 1.緒論 1 1.1動機與目的 1 1.2低成本精密位移計基本概念 2 1.3技術回顧 4 1.4應用潛力 12 1.5研究方法 13 2.低成本精密位移放大器概念設計 15 2.1放大機構介紹 15 2.2撓性樞軸機構概念 18 2.3放大機構應用概念 19 2.3.1不等撓臂傾角機構概念 20 2.3.2多層槓桿機構概念 22 3.低成本精密位移放大器設計、組件、測試與評估 23 3.1不等撓臂傾角機構試驗 23 3.1.1不等撓臂傾角機構試驗一 23 3.1.2不等撓臂傾角機構試驗二 25 3.2多層槓桿機構機幾何模擬測試 26 3.2.1多層槓桿機構原型一 26 3.2.2多層槓桿機構原型二 28 3.2.3多層槓桿機構原型三 37 3.2.4多層槓桿機構原型四 48 4.低成本精密位移計重複精度測試 52 4.1位移放大率檢測試驗 52 4.1.1振動現象與簡易阻尼器 52 4.1.2小範圍重複精度量測 55 4.1.3光槓桿量測實驗 58 4.2霍爾元件敏感度測試 62 4.3元件組裝測試 63 5.實驗討論 68 5.1低成本精密位移放大器誤差討論 68 5.2組裝誤差之影響 69 5.3溫度因素之影響 70 5.4產品化設計 72 6.結論 75 參考文獻 76 附錄一:多層槓桿原型四公式推導 81 附錄二:Honeywell線性磁敏元件規格表 83

    [1] 行政院主計處,「國情統計通報第233號」,2016.12.12
    [2] 台灣機械工業同業公會,「2015~2016年台灣工具機生產金額台數統計表」,http://www.tami.org.tw/statistics/2016_machine.html#1
    [3] 黃丹齊,「前有強敵、後有追兵,台商面臨雙面夾殺的大陸工具機市場」,Machine Tool & Accessory Magazine 工具機與零組件雜誌,2014.04 No.59
    [4] Shawn P. Molyan et al., “Implementation of A Metrology Frame to Improve Positioning of Micro/Meso-scale Machine Tools”, NAMRI/SME Vol.37,2009, P.573-580
    [5] Anonymous, “Motion Basics and Standards”, https://www.newport.com/n/motion-basics-and-standards
    [6] Micro Epsilon, “capaDTCT 6110 Datasheet”, https://www.micro-epsilon.com/download/products/cat-capa/dax--capaNCDT-6110--en.html#page=2&zoom=Fit
    [7] Kaman, “KD-2306 Datasheet”, http://www.kamansensors.com/pdf_files/Kaman_KD-2306_data_sheet_web.pdf
    [8] Micro Epsilon, “ induSensor catalog”, https://www.micro-epsilon.com/download/products/cat--induSENSOR--en.pdf
    [9] Micro Epsilon, “ optoNCDT 1320 Datasheet”, https://www.micro-epsilon.com/download/products/cat-optoncdt/dax--optoNCDT-1320--en.html#page=2&zoom=Fit
    [10] Micro Epsilon, “mainSensor catalog”, https://www.micro-epsilon.com/download/products/cat--mainSENSOR--en.pdf
    [11] Alexander H. Slocum, “Precision Machine Design” , Prentice-Hall International Inc., 1992
    [12] Lion Precision, “Capacitive Sensor TechNote LT03-0020”, 2012, http://www.lionprecision.com/tech-library/technotes/cap-0020-sensor-theory.html#contents
    [13] Memstec, Products Introduction, http://www.memstec.com.tw/product.php?pid=164
    [14] Lion Precision, “Eddy-Current Linear Displacement Sensors An Overview”, http://www.lionprecision.com/eddy-current-sensors/index.html
    [15] Andrew J. Fleming, “A Review of nanometer resolution position sensors: Operation and Performance”, ELSEVIER Sensors and Actuators A: Physical, 2013, p.106-126
    [16] Sensor and Actuators, “How Magnetostrictive Sensor Works”, http://sensors-actuators-info.blogspot.tw/2009/08/magnetostriction-is-property-of.html
    [17] Keyence, “Laser Displacement Sensor Technology Book”, https://www.controldesign.com/assets/10WPpdf/100208_Keyence_LaserSensor.pdf
    [18] MTI Instruments Inc., “An Introduction To Laser Triangulation Sensors ”, https://www.azosensors.com/article.aspx?ArticleID=523
    [19] Keyence, “Digital Contact Displacement Sensor”, Product Catalog
    [20] Daniele Tosi et al., “Design and analysis of a low-cost compensated POF displacement sensor for industrial applications”, Proceedings of SPIE, 2013
    [21] Liu Xiaokang et al., “Research on a Novel High-precision Intelligent Displacement Sensor”, Solid State Phenomena Vol.113, 2006, p.435-441
    [22] Mark A Lantz et al., “A micromechanical thermal displacement sensor with nanometre resolution”, Nanotechnology 16, 2005, p.1089-1094
    [23] Maciej Bodnicki et al., “Miniature displacement sensor”, Springer: Advanced Mechatronics Solutions Vol.393, 2016, p.313-318
    [24] Chao-Jung Chen et al., “Development of Nano-Positioning Stage with Symmetric Bridge Mechanism and FPGA Real-Time Control”, Journal of Advanced Engineering Vol. 6, No. 3, 2011, p.169-175
    [25] J. Juuti et al., “Mechanically amplified large displacement piezoelectric actuators”, Elsevier Sensors and Actuators, A 120, 2005, p.225-231
    [26] Che-Chih Tsao and Chih-Hsiang Chen, “Cascaded Mirror Array: design and demonstration of low-cost light-weight digital scanning”, Microsystem Technologies, 2017, doi: 10.1007/s00542-017-3612-5
    [27] 陳智翔,「新型數位掃描技術」,國立清華大學碩士論文,2017
    [28] Y. Nada et al., “Mechanical Displacement Multiplier: 250μm Stable Travel Range MEMS Actuator Using Frictionless Simple Compliant Structure”, IEEE MEMS, 2012, p.1161-1164
    [29] Patrick Merken et al., “Mechanical Based Circular Notch Hinge Design”, ORBI Reports, 2007
    [30] Y. Akiniwa et al., “Fatigue strength of spring steel under axial and torsional loading in the very high cycle regime”, ELSEVIER, 2008, p.2057-2063
    [31] Carl E. Grip et al., “SPRING STEEL”, US Patent, 1983
    [32] Tony Fry, “Evaluation of the Repeatability of Residual”, Research Report of NPL in UK, 2002
    [33] Material Parameter, https://www.makeitfrom.com/material-properties/ASTM-A227-Spring-Steel
    [34] “ISO230-2: Determination of accuracy and repeatability of positioning numerically controlled axes”, international standard, 2006
    [35] Honeywell, “SS495A Datasheet”, http://docs-europe.electrocomponents.com/webdocs/009a/0900766b8009a37c.pdf
    [36] J. Hesselbach, A. Raatz, “Performance of Pseudo-Elastic Flexure Hinges in Parallel Robots for Micro-Assembly Tasks”, ELSEVIER, 2004, p.329-332
    [37] Dr. Bhimsen Soragaon, “Buckling of Columns”, SlideShare, 2016, https://www.slideshare.net/bhimasen/buckling-of-columns/9

    QR CODE