研究生: |
王維鴻 Wang, Wei-Hong |
---|---|
論文名稱: |
硒化銦場效電晶體非揮發性記憶體特性分析 Analysis of Non-Volatile Memory Characteristics of InSe Field-Effect Transistor |
指導教授: |
邱博文
Chiu, Po-Wen |
口試委員: |
李奎毅
Lee, Kuei-Yi 林永昌 Lin, Yung-Chang |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 82 |
中文關鍵詞: | 硒化銦 、場效電晶體 、非揮發 、記憶體 |
外文關鍵詞: | InSe, field-effect transistor, non-volatile, memory |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二維層狀材料具有高可撓性、高操作頻率以及低功耗等特性,因此被認為有機會取代傳統矽,成為新一代的半導體材料。除了較為常人所知的石墨烯(Graphene)、過渡金屬二硫族化物(Transition metal dichalcogenides, TMDCs),三六族層狀化合物半導體的研究也逐漸浮上檯面。其中硒化銦(InSe)材料亦開始被廣泛研究,由於其擁有極小的有效電子質量及適當的能帶大小,具有極高電子遷移率的硒化銦材料,極有可能成為未來半導體產業的核心材料。
與黑磷(Black phosphorus)相似的化學活性造成硒化銦非常容易與大氣中的水、氧分子反應而使元件特性的下降,依據電性量測結果可以觀察到在大氣中氧化之硒化銦場效電晶體擁有極大的遲滯現象,文獻探討中卻鮮少有將其應用在非揮發性記憶體。因此本論文以硒化銦為通道使用金屬遮罩以定義電晶體電極,製成背閘極硒化銦場效電晶體並量測其基本電性及非揮發性記憶體特性。量測結果呈現濕氧氧化7小時的元件擁有較好的非揮發性記憶體特性,其擁有優秀的重複抹寫(Cycling endurance)能力,並展現長時間維持將近2個數量級的電荷儲存(Retention)能力。在未照光環境下,電子遷移率為82 cm ^2/Vs。照有光強度10 mW/cm^2、波長405 nm之紫光環境下,在$ Vgs = 75V時,元件呈現最大的光響應大約為43 A/W。
Two-dimensional layered materials have characteristics such as high flexibility, high operating frequency, and low power consumption, so they are considered to have the chance to substitute traditional silicon process as a new generation of semiconductor materials. Group III-VI compound semiconductors are one class of important 2-D materials. Among them, InSe has been widely studied. InSe is a promising material because of its small effective electron mass and appropriate band gap, with extremely high electron mobility.
Chemical activity of InSe, which is similar to black phosphorus, makes it easily react with water and oxygen molecules in the atmosphere, decreasing the performance of the device. According to the results of electrical measurements, InSe devices oxidized in the atmosphere show a large current hysteresis, but few of them have been used as non-volatile memory in the literature. Therefore, in this thesis, a shadow mask is used to define the source and drain. The back gate InSe FET is fabricated then the basic electrical and non-volatile memory characteristics are measured. The measurement results show that the device with wet oxidation for 7 hours has better non-volatile memory characteristics. It has excellent cycling endurance ability and charge storage ability which maintains nearly 2 orders of magnitude with high stability. In the dark state, the electron mobility is 82 cm ^2/Vs. Under light irradiance of 10 mW/cm^2 and wavelength of 405 nm, the device exhibits a maximum photoresponsivity of 43 A/W at Vgs = 75V.
[1] https://www.gartner.com/en/newsroom/press-releases/2019-01-07-gartnersays-worldwide-semiconductor-revenue-grew-13-.
[2] https://commons.wikimedia.org/wiki/File:LeeDeForestwithAudiontubes. jpg. [3] http://www.cedmagic.com/history/transistor-1947.html. [4] https://commons.wikimedia.org/wiki/File:MOSFET-Cross.png. [5] http://www.ti.com/corp/graphics/press/image/online/co1034. jpg.
[6] K. Shirriff, “The surprising story of the first microprocessors,” IEEE Spectrum, vol. 53, no. 9, pp. 48–54, September 2016.
[7] G. E. Moore, “Cramming more components onto integrated circuits, reprinted from electronics, volume 38, number 8, april 19, 1965, pp.114 ff.,” IEEE Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp. 33–35, Sept. 2006.
[8] C. Auth, “45nm high-k + metal gate strain-enhanced cmos transistors,” in 2008 IEEE Custom Integrated Circuits Conference, pp. 379–386, 21-24 Sept. 2008.
[9] D. Hisamoto,W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, “Finfet-a self-aligned double-gate mosfet scalable to 20 nm,” IEEE Transactions on Electron Devices, vol. 47,
no. 12, pp. 2320–2325, Dec. 2000.
[10] https://www.samsung.com/semiconductor/minisite/exynos/technology/finfetprocess/.
[11] F. Zhang and J. Appenzeller, “Tunability of short-channel effects in mos2 field-effect devices,” Nano Lett., vol. 15, pp. 301–306, Jan. 2015.
[12] J. Bardeen, “Surface states and rectification at a metal semi-conductor contact,” Phys. Rev., vol. 71, pp. 717–727, May 1947.
[13] H. Hasegawa and T. Sawada, “On the electrical properties ofcompound semiconductor interfaces in metal/insulator/ semiconductor structures and the possible origin ofinterface states,” Thin Solid Films, vol. 103, no. 1, pp. 119–140, 1983.
[14] V. Heine, “Theory ofsurface states,” Phys. Rev., vol. 138, pp. A1689–A1696, June 1965.
[15] J. Tersoff, “Schottky barrier heights and the continuum of gap states,” Phys. Rev. Lett., vol. 52, pp. 465–468, Feb. 1984.
[16] C. Kim, I. Moon, D. Lee, M. S. Choi, F. Ahmed, S. Nam, Y. Cho, H.-J. Shin, S. Park, and W. J. Yoo, “Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides,” ACS Nano, vol. 11, pp. 1588– 1596, Feb. 2017.
[17] R. Islam, G. Shine, and K. C. Saraswat, “Schottky barrier height reduction for holes by fermi level depinning using metal/nickel oxide/silicon contacts,” vol. 105, no. 18, pp. 182103–1821034–, Nov 2014.
[18] H.-J. Chuang, X. Tan, N. J. Ghimire, M. M. Perera, B. Chamlagain, M. M.-C.
Cheng, J. Yan, D. Mandrus, D. Tománek, and Z. Zhou, “High mobility wse2p- and n-type field-effect transistors contacted by highly doped graphene for low-resistance contacts,” Nano Lett., vol. 14, pp. 3594–3601, June 2014.
[19] http://www.ndl.org.tw/docs/publication/224/pd f/D1.pd f. [20] K. Kahng and S. Sze Solid State Device Research Conference, 629, 1967. [21] http://www.ndl.narlabs.org.tw/docs/publication/213/pd f/D2.pd f.
[22] S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura, and H. Ohno, “Tunnel magnetoresistance of 604300k by suppression of ta diffusion in cofeb??mgo??cofeb pseudospin-valves annealed at high temperature,” Appl. Phys. Lett., vol. 93, pp. 082508–, Aug. 2008.
[23] Z. Fan, J. Chen, and J. Wang, “Ferroelectric hfo2 based materials for next generation ferroelectric memories,” J. Adv. Dielect., vol. 06, pp. 1630003–, May 2016.
[24] A. K. Geim and I. V. Grigorieva, “Van der waals heterostructures,” Nature, vol. 499, pp. 419–, July 2013.
[25] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, pp. 666–, Oct. 2004.
[26] S. Rathi, I. Lee, D. Lim, J. Wang, Y. Ochiai, N. Aoki, K. Watanabe, T. Taniguchi, G.-H. Lee, Y.-J. Yu, P. Kim, and G.-H. Kim, “Tunable electrical and optical characteristics in monolayer graphene and few-layer mos2
heterostructure devices,” Nano Lett., vol. 15, pp. 5017–5024, Aug. 2015.
[27] W. S. Leong, X. Luo, Y. Li, K. H. Khoo, S. Y. Quek, and J. T. L. Thong, “Low resistance metal contacts to mos2 devices with nickel-etched-graphene electrodes,” ACS Nano, vol. 9, pp. 869–877, Jan. 2015.
[28] J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on sio2,” Nature Nanotechnology, vol. 3, pp. 206–, Mar. 2008.
[29] J. Greim and K. A. Schwetz, “Boron carbide, boron nitride, and metal borides,” Dec. 2006.
[30] M. Sup Choi, G.-H. Lee, Y.-J. Yu, D.-Y. Lee, S. Hwan Lee, P. Kim, J. Hone, and W. Jong Yoo, “Controlled charge trapping by molybdenum disulphide and graphene in ultrathin heterostructured memory devices,” Nature Communications, vol. 4, pp. 1624–, Mar. 2013.
[31] M. Okada, T. Sawazaki, K. Watanabe, T. Taniguch, H. Hibino, H. Shinohara, and R. Kitaura, “Direct chemical vapor deposition growth ofws2 atomic layers on hexagonal boron nitride,” ACSNano, vol. 8, pp. 8273–8277, Aug. 2014.
[32] G.-H. Lee, Y.-J. Yu, C. Lee, C. Dean, K. L. Shepard, P. Kim, and J. Hone, “Electron tunneling through atomically flat and ultrathin hexagonal boron nitride,” Appl. Phys. Lett., vol. 99, pp. 243114–, Dec. 2011.
[33] A. Castellanos-Gomez, “Black phosphorus: Narrow gap, wide applications,” J. Phys. Chem. Lett., vol. 6, pp. 4280–4291, Nov. 2015.
[34] L. Li, Y. Yu, G. J. Ye, Q. Ge, X. Ou, H.Wu, D. Feng, X. H. Chen, andY. Zhang, “Black phosphorus field-effect transistors,” Nature Nanotechnology, vol. 9,
pp. 372–, Mar. 2014.
[35] A. Favron, E. Gaufrès, F. Fossard, A.-L. Phaneuf-L?Heureux, N. Y.-W. Tang, P. L. Lévesque, A. Loiseau, R. Leonelli, S. Francoeur, and R. Martel, “Photooxidation and quantum confinement effects in exfoliated black phosphorus,” Nature Materials, vol. 14, pp. 826–, May 2015.
[36] R. A. Doganov, E. C. T. O?Farrell, S. P. Koenig, Y. Yeo, A. Ziletti, A. Carvalho, D. K. Campbell, D. F. Coker, K. Watanabe, T. Taniguchi, A. H. C. Neto, and B. ?zyilmaz, “Transport properties of pristine few-layer black phosphorus by van der waals passivation in an inert atmosphere,” Nature Communications, vol. 6, pp. 6647–, Apr. 2015.
[37] A. Avsar, I. J. Vera-Marun, J. Y. Tan, K. Watanabe, T. Taniguchi, A. H. Castro Neto, and B. ?zyilmaz, “Air-stable transport in graphene-contacted, fully encapsulated ultrathin black phosphorus-based field-effect transistors,” ACS Nano, vol. 9, pp. 4138–4145, Apr. 2015.
[38] Q. Zhou, Q. Chen, Y. Tong, and J. Wang, “Light-induced ambient degradation of few-layer black phosphorus: Mechanism and protection,” Angew. Chem. Int. Ed., vol. 55, pp. 11437–11441, Sept. 2016.
[39] J. D. Wood, S. A. Wells, D. Jariwala, K.-S. Chen, E. Cho, V. K. Sangwan, X. Liu, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Effective passivation ofexfoliated black phosphorus transistors against ambient degradation,” Nano Lett., vol. 14, pp. 6964–6970, Dec. 2014.
[40] A. K. Geim and I. V. Grigorieva, “Van der waals heterostructures,” Nature, vol. 499, pp. 419–, July 2013.
[41] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang,“The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nature Chemistry, vol. 5, pp. 263–, Mar. 2013.
[42] Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, and M. S. Strano, “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,” Nature Nanotechnology, vol. 7, pp. 699–, Nov. 2012.
[43] A. Kuc, N. Zibouche, and T. Heine, “Influence ofquantum confinement on the electronic structure of the transition metal sulfide ts2,” Phys. Rev. B, vol. 83, pp. 245213–, June 2011.
[44] Z. Yang, W. Jie, C.-H. Mak, S. Lin, H. Lin, X. Yang, F. Yan, S. P. Lau, and J. Hao, “Wafer-scale synthesis of high-quality semiconducting twodimensional layered inse with broadband photoresponse,” ACSNano, vol. 11, pp. 4225–4236, Apr. 2017.
[45] P. Hu, L. Wang, M. Yoon, J. Zhang, W. Feng, X. Wang, Z. Wen, J. C. Idrobo, Y. Miyamoto, D. B. Geohegan, and K. Xiao, “Highly responsive ultrathin gas nanosheet photodetectors on rigid and flexible substrates,” Nano Lett., vol. 13, pp. 1649–1654, Apr. 2013.
[46] P. Hu, Z. Wen, L. Wang, P. Tan, and K. Xiao, “Synthesis of few-layer gase nanosheets for high performance photodetectors,” ACS Nano, vol. 6, pp. 5988–5994, July 2012.
[47] M. Ishikawa and T. Nakayama, “Theoretical investigation of geometry and electronic structure of layered in 2se 3,” vol. 36, no. Part 2, No. 12A, pp. L1576–L1579–, 1997.
[48] G. W. Mudd, A. Patanè, Z. R. Kudrynskyi, M. W. Fay, O. Makarovsky,
L. Eaves, Z. D. Kovalyuk, V. Zólyomi, and V. Falko, “Quantum con-fined acceptors and donors in inse nanosheets,” Appl. Phys. Lett., vol. 105, pp. 221909–, Dec. 2014.
[49] T. Ikari, S. Shigetomi, and K. Hashimoto, “Crystal structure and raman spectra of inse,” phys. stat. sol. (b), vol. 111, pp. 477–481, June 1982.
[50] G. W. Mudd, S. A. Svatek, T. Ren, A. Patanè, O. Makarovsky, L. Eaves, P. H. Beton, Z. D. Kovalyuk, G.V. Lashkarev, Z. R. Kudrynskyi, and A. I. Dmitriev, “Tuning the bandgap ofexfoliated inse nanosheets by quantum confinement,” Adv. Mater., vol. 25, pp. 5714–5718, Oct. 2013.
[51] S. Lei, L. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gupta, R. Vajtai, A. D. Mohite, and P. M. Ajayan, “Evolution of the electronic band structure and efficient photo-detection in atomic layers of inse,” ACS Nano, vol. 8, pp. 1263–1272, Feb. 2014.
[52] N. Kuroda and Y. Nishina, “Resonance raman scattering study on exciton and polaron anisotropies in inse,” Solid State Communications, vol. 34, no. 6, pp. 481–484, 1980.
[53] W. Feng,W. Zheng,W. Cao, and P. Hu, “Back gated multilayer inse transistors with enhanced carrier mobilities via the suppression ofcarrier scattering from a dielectric interface,” Adv. Mater., vol. 26, pp. 6587–6593, Oct. 2014.
[54] P.-H. Ho, Y.-R. Chang, Y.-C. Chu, M.-K. Li, C.-A. Tsai, W.-H. Wang, C.-H. Ho, C.-W. Chen, and P.-W. Chiu, “High-mobility inse transistors: The role of surface oxides,” ACS Nano, vol. 11, pp. 7362–7370, July 2017.
[55] D. A. Bandurin, A. V. Tyurnina, G. L. Yu, A. Mishchenko, V. Zólyomi, S. V. Morozov, R. K. Kumar, R. V. Gorbachev, Z. R. Kudrynskyi, S. Pezzini, Z. D.
Kovalyuk, U. Zeitler, K. S. Novoselov, A. Patanè, L. Eaves, I. V. Grigorieva,V. I. Fal’ko, A. K. Geim, and Y. Cao, “High electron mobility, quantum hall effect and anomalous optical response in atomically thin inse,” Nature Nanotechnology, vol. 12, pp. 223–, Nov. 2016.
[56] Y.-R. Chang, P.-H. Ho, C.-Y. Wen, T.-P. Chen, S.-S. Li, J.-Y. Wang, M.-K. Li, C.-A. Tsai, R. Sankar, W.-H. Wang, P.-W. Chiu, F.-C. Chou, and C.-W. Chen, “Surface oxidation doping to enhance photogenerated carrier separation efficiency for ultrahigh gain indium selenide photodetector,” ACS Photonics, vol. 4, pp. 2930–2936, Nov. 2017.
[57] C. Carlone, S. Jandl, and H. R. Shanks, “Optical phonons and crystalline symmetry of inse,” phys. stat. sol. (b), vol. 103, pp. 123–130, Jan. 1981.
[58] T.-H. Tsai, F.-S. Yang, P.-H. Ho, Z.-Y. Liang, C.-H. Lien, C.-H. Ho, Y.-F. Lin, and P.-W. Chiu, “High-mobility inse transistors: The nature of charge transport,” ACS Appl. Mater. Interfaces, vol. 11, pp. 35969–35976, Oct. 2019.
[59] A. Segura, F. Pomer, A. Cantarero, W. Krause, and A. Chevy, “Electron scattering mechanisms in n-type indium selenide,” Phys. Rev. B, vol. 29, pp. 5708–5717, May 1984.
[60] D. B. Buchholz, Q. Ma, D. Alducin, A. Ponce, M. Jose-Yacaman, R. Khanal, J. E. Medvedeva, and R. P. H. Chang, “The structure and properties of amorphous indium oxide,” Chem. Mater., vol. 26, pp. 5401–5411, Sept. 2014.
[61] A. A. Kistanov, Y. Cai, K. Zhou, S. V. Dmitriev, and Y.-W. Zhang, “Atomicscale mechanisms of defect- and light-induced oxidation and degradation of inse,” J. Mater. Chem. C, vol. 6, no. 3, pp. 518–525, 2018.
[62] P. Dutta and P. M. Horn, “Low-frequency fluctuations in solids: 1
Mod. Phys., vol. 53, pp. 497–516, July 1981. 84
f noise,[63] G. Ghibaudo, O. Roux, C. Nguyen-Duc, F. Balestra, and J. Brini, “Improved analysis oflow frequency noise in field-effect mos transistors,” phys. stat. sol. (a), vol. 124, pp. 571–581, Apr. 1991.
[64] Low-frequency Noise In Advanced Mos Device-2017.
[65] L. Dobrescu, M. Petrov, D. Dobrescu, and C. Ravariu, “Threshold voltage extraction methods for mos transistors,” in 2000 International Semiconductor Conference. 23rdEdition. CAS2000 Proceedings (Cat. No.00TH8486), vol. 1, pp. 371–374 vol.1, 10-14 Oct. 2000.
[66] D. J. Late, B. Liu, H. S. S. R. Matte, V. P. Dravid, and C. N. R. Rao, “Hysteresis in single-layer mos2 field effect transistors,” ACS Nano, vol. 6, pp. 5635–
5641, June 2012.