簡易檢索 / 詳目顯示

研究生: 楊瑞梅
Yang, Jui-Mei
論文名稱: STEAM教學能力檢核架構之建構研究
Development of a STEAM Teaching Competency Evaluation Framework
指導教授: 王子華
Wang, Tzu-Hua
郭哲宇
Kuo, Che-Yu
口試委員: 吳聲毅
Wu, Sheng-Yi
邱富源
Chiu, Fu-Yuan
學位類別: 碩士
Master
系所名稱: 竹師教育學院 - 教育與學習科技學系
Education and Learning Technology
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 78
中文關鍵詞: STEAM 教學教師教學能力檢核架構德菲法
外文關鍵詞: STEAM education, teaching competency framework, Delphi method
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,許多國家在教育改革中,納入整合科學、科技、工程、藝術及數學的跨領域教育,以培養具有創新、自主學習及解決問題的能力與適應快速變化的人才。面對此趨勢,國立清華大學竹師教育學院推動「清華STEAM學校」(Wang et al., 2019;王子華、林紀慧,2018;王子華,2019),其課程與教學特色以學生日常生活中的重要議題出發,融合探究學習的5E模式、建模中心的科學與數學探究及促進創新實作的設計思考,並強調STEAM學科知識的應用。「清華STEAM學校」之課程與教學主要依循發現議題、定義問題、模型與建模與學習遷移四階段模式,簡稱為DDMT教學模式(Wang et al., 2019;王子華,2019)。
      教學反思是促進有效教學的重要歷程。國內尚無STEAM相關教學能力架構引導教師反思。此研究目的即是提出一套STEAM教學能力架構,以DDMT教學模式為參照鷹架,增加此架構對清華STEAM學校教師在教案設計與教學的實用性,為此本研究將探討STEAM教案設計及課堂教學的教學能力架構包含哪些重要要素?
      本研究以文獻分析教師教學能力要素、自然科教學的要素與STEAM的教學要素並提出與清華STEAM學校DDMT模式中核心概念對應的重要架構及要素,聚焦於教師STEAM教案設計及課堂實務之教學能力,並使用德菲法經46位專家反覆匿名討論最終提出STEAM教學能力檢核架構。
      根據研究的結果,本研究提出STEAM教師教學能力架構與內涵,包括六個層面,簡述如下:第一層面⏤議題的選擇、第二層面⏤教學模式(包含了發現、定義、模型與建模、遷移)、第三層面⏤教學策略、第四層面⏤教學媒介與表徵、第五層面⏤課堂互動與對話的建立及第六層面⏤評量。


    Recently, an interdisciplinary approach integrating Science, Technology, Engineering, Art and Math (STEAM) teaching and learning was advocated. Such approach emphasizes student-centered and aims to cultivate students' abilities of cooperation, critical thinking, creativity and problem solving (Stohlmann, Moore & Roehrig, 2012; Burrows & Slater, 2015; Shernoff, Sinha, Bressler & Ginsburg, 2017).
    National Tsing Hua University founded Tsing Hua STEAM school(Wang et al., 2019) and proposed a four-phase teaching model, including discovering problems, defining problems, proposing models and modeling the problem solutions, and transferring the problem solutions (DDMT) (Wang et al., 2019). By applying the DDMT model for curriculum development and implementation in the allied k-12 schools, Tsing Hua STEAM school intentded to facilitate good quality STEAM education in Taiwan.
    To guide the curriculum preparation and instruction practice for the allied schools, this study developed teaching competency framework. Based on the literature review and the DDMT model, an initial framework with 6 dimensions were proposed. The first dimension highlighted the STEAM issue selection, to facilitate students’ explorations into STEAM-related daily-life problems. The second and third dimensions were the DDMT model implementation and student-centered teaching strategies. The fourth dimension highlighted the appropriate use of instructional media and representations to support students’ understandings and applications of science and math concepts during modelling. The fifth and sixth dimensions emphasized the cooperative and mutual sharing learning community and dialogue, and the multiple assessment approach in the STEAM classroom. We applied the Delphi method to validate the proposed framework.
    Data analysis and results support and strengthen the validity of our STEAM teaching competency framework. After each of two runs of data collection, we clarified and revised the definitions of the 6 framework dimensions accordingly. Additionally, 97.73% and 98.03 %, at average, of the 42 expert teachers rated the 6 dimensions as important or very important at two runs of questionnaires respectively.

    目次 第一章 緒論 1 第一節 研究動機 1 第二節 研究目的 2 第三節 研究問題 2 第二章 文獻探討 4 第一節 STEAM教育 4 一、 STEAM教育發展 4 (一) STEM 4 (二) 從STEM到STEAM 5 (三) 目前的STEAM教育理念 5 二、 清華STEAM 7 三、 STEAM的教學模式 8 (一) 問題導向教學模式PBL (Problem based learning) 8 (二) 探究式教學模式 8 (三) 設計思考與實作 9 (四) 建模科學探究modelling-based teaching (MBT) 10 (五) DDMT教學模式 11 第二節 STEAM教學能力架構 12 第五章 研究設計 16 第一節 研究架構 16 第二節 研究方法 17 (一) 研究對象 17 (二) 研究工具 18 (三) 實施步驟 19 1. 建立STEAM教學能力架構初稿 19 2. 使用德菲法確立STEAM教學能力架構 23 3. 分析所蒐集到的資料 23 第六章 研究結果與分析 25 第一節 STEAM教學能力的要素分析與架構的確立 25 一、 STEAM教學能力初步架構與內容 25 二、 使用德菲法確立STEAM教學能力初步架構與內容 27 (一) 第一次專家意見調查結果 27 (二) 第二階段專家意見調查結果 37 3. 第一階段與第二階段專家意見調查結果之比較 44 第七章 結論與建議 46 一、 結論 46 二、 建議 49 (一) STEAM教學能力的建議 49 (二) 未來研究方向建議 49 參考文獻 50 附錄一 60 附錄二 68

    Arrows, H. S. (1996). Problem-based learning in medicine and beyond: A brief
    overview. In L. Wilkerson and H. Gilselaers (Eds.), Bringing problem-based
    learning to higher education: Theory and practice (pp. 3–12). San Francisco,
    CA: Jossey-Bass. https://doi.org/10.1002/tl.37219966804

    Asghar, A. , Ellington, R. , Rice, E. , Johnson, F. , & Prime, G. M. (2012). Supporting
    STEM Education in Secondary Science Contexts. Interdisciplinary Journal of
    Problem-Based Learning, 6(2). Available at:
    https://doi.org/10.7771/1541-5015.1349

    Barrows, H. S. (1996). Problem-Based Learning in Medicine and Beyond: A Brief
    Overview. New Directions for Teaching and Learning, 1996, 3-12.
    http://dx.doi.org/10.1002/tl.37219966804

    Bowers, S. & Ernst, J. (2018). Assessing Elementary In-Service Teachers’
    STEM-Centric Lesson Plans. Journal of STEM Education, 19(2). Laboratory
    for Innovative Technology in Engineering Education (LITEE).

    Brown, T. (2008). Design thinking. Harvard Business Review. June, 2008, 84-92.
    https://doi.org/10.1111/j.1467-8616.2008.00536.x

    Brush, T. , & Saye, J. (2008). The Effects of Multimedia-Supported Problem-based
    Inquiry on Student Engagement, Empathy, and Assumptions About History.

    51

    Interdisciplinary Journal of Problem-Based Learning,
    2(1).https://doi.org/10.7771/1541-5015.1052

    Burrows, A., & Slater, T. (2015). A proposed integrated STEM framework for
    contemporary teacher preparation. Teacher Education and Practice, 28(2/3),
    318–330.

    Bybee, R. W. (2010). Advancing STEM Education: A 2020 Vision. Technology and
    Engineering Teacher, 70, 30-35.

    Bybee, R.W., Taylor, J.A., Gardner, A., Van Scotter, P., Powell, J.C., & Westbrook,
    A. (2006). The BSCS 5E instructional model: origins, effectiveness and
    applications.

    Carroll, M., Goldman, S., Britos, L., Koh, J., Royalty, A. and Hornstein, M. (2010),
    Destination, Imagination and the Fires Within: Design Thinking in a Middle
    School Classroom. International Journal of Art & Design Education, 29:
    37-53. https://doi.org/10.1111/j.1476-8070.2010.01632.x

    Clayton, M. J. (1997). Delphi: A technique to harness expert opinion for critical
    decision-making tasks in education. Educational Psychology, 17(4), 373–386.
    https://doi.org/10.1080/0144341970170401

    Connor, A.M., Karmokar, S. & Whittington, C. (2015) From STEM to STEAM:
    Strategies for enhancing engineering & technology education. International
    Journal of Engineering Pedagogies, 5(2), 37-47.
    http://dx.doi.org/10.3991/ijep.v5i2.4458

    52

    Dalkey, N., & Helmer, O. (1963). An experimental application of the Delphi method
    to the use of experts. Management Science, 9(3), 458-467.
    https://doi.org/10.1287/mnsc.9.3.458

    Danielson, C. (1996).Enhancing professional practice: A framework for teaching.
    Alexandria. Association for Supervision and Curriculum Development.

    Delisle, R. (1997). How to use problem-based learning in the classroom. Association
    Supervision and Curriculum Development.

    Domestic Policy Council Office of Science and Technology Policy (2006). American
    Competitiveness Initiative.

    Dunn, W. N.(1994). Public Policy Analysis: An Introduction. Routledge.

    Ester Alake-Tuenter, Harm J.A. Biemans, Hilde Tobi, Martin Mulder(2013).
    Inquiry-based science teaching competence of primary school teachers: A
    Delphi study. Teaching and Teacher Education, 35, 13-24,
    https://doi.org/10.1016/j.tate.2013.04.013.

    Gilbert J.K., Justi R. (2016) Approaches to Modelling-Based Teaching. Models and
    Modeling in Science Education, vol 9. Springer, Cham.
    https://doi.org/10.1007/978-3-319-29039-3_4

    Gilbert, J. K. (ed.). (1993). Models & Modelling in Science Education. Association
    for Science Education. Springer.

    Gilbert, S.W. (1991). Model building and a definition of science. Journal of Research
    in Science Teaching, 28(1), 73–79. https://doi.org/10.1002/tea.3660280107

    53

    Halloun, I. (1996). Schematic modeling for meaningful learning of physics. Journal of
    Research in Science Teaching, 33(9), 1019-1041.
    https://doi.org/10.1002/(SICI)1098-2736(199611)33:9<1019::AID-TEA4>3.0.
    CO;2-I

    Hammerman, E. (2006). 8 essentials of inquiry-based science. Sage Publications.

    Hasso Plattner. (2010). An introduction to design thinking process guide. Institute of
    Design at Stanford,

    Herro, D. and Quigley, C. (2016). Innovating with STEAM in middle school
    classrooms: remixing education", On the Horizon, 24 (3),190-204.
    https://doi.org/10.1108/OTH-03-2016-0008

    Hmelo-Silver, C.E. (2004). Problem-Based Learning: What and How Do Students
    Learn?. Educational Psychology Review 16, 235–266.
    https://doi.org/10.1023/B:EDPR.0000034022.16470.f3

    International Council of Associations for Science Education 〔ICASE〕. (2013).
    Kuching Declaration on Science and Technology Education.

    Jacobs, C., Martin, S., & Otieno, T. (2008). A Science Lesson Plan Analysis
    Instrument for Formative and Summative Program Evaluation of a Teacher
    Education Program. Science Education, 92, 1096-1126.
    https://doi.org/10.1002/sce.20277

    Joyce, A. & Dzoga, M. (2011). Science, technology, engineering and mathematics
    education: Overcoming challenges in Europe. Intel Educator Academy EMEA.

    54

    Kennedy, T. J., & Odell, M. R. L. (2014). Engaging Students in STEM Education.
    Science Education International, 25(3), 246-258.

    Kim, B. H., & Kim, J. (2016). Development and validation of evaluation indicators
    for teaching competency in STEAM education in Korea. Eurasia Journal of
    Mathematics, Science & Technology Education, 12(7), 1909–1924.
    https://doi.org/10.12973/eurasia.2016.1537a

    Kloser, M. (2014). Identifying a core set of science teaching practices: A Delphi
    expert panel approach. Journal of Research in Science Teaching, 51, 1185–
    1217. Identifying a core set of science teaching practices: A Delphi expert
    panel approach

    Land, M. H. (2013). Full STEAM Ahead: The Benefits of Integrating the Arts Into
    STEM. Procedia Computer Science, 20, 547–552
    https://doi.org/10.1016/j.procs.2013.09.317

    Lehrer, R., M.J. Kim, and L. Schauble. (2007). Supporting the development of
    conceptions of statistics by engaging students in measuring and modeling
    variability. International Journal of Computers for Mathematical Learning 12
    (3):195–216. https://doi.org/10.1007/s10758-007-9122-2

    Löfmark, A.,Mårtensson, G.(2017).Validation of the tool assessment of clinical
    education (AssCE): A study using Delphi method and clinical experts. Nurse
    education today,50,82-86. https://doi.org/10.1016/j.nedt.2016.12.009

    Madden, M. E., Baxter, M., Beauchamp, H., Bouchard, K., Habermas, D., Huff, M. &
    Plague, G. (2013). Rethinking STEM Education: An Interdisciplinary STEAM

    55

    Curriculum. Procedia Computer Science, 20, 541–546.
    https://doi.org/10.1016/j.procs.2013.09.316

    Marx ,R., Blumenfeld, P. C., Krajcik, J. S., Fishman, B., Soloway, E. & Geier, R.
    (2004). Inquiry-Based Science in the Middle Grades: Assessment of Learning
    in Urban Systemic Reform. Journal of Research in Science Teaching, 41(10),
    1063–1080. https://doi.org/10.1002/tea.20039

    McDougall, P. (2012). U.S. Tech Worker Shortage Looms, Study Warns.
    Informationweek.

    Murry, J.W., Jr., & Hammons, J.O. (1995). Delphi: A Versatile Methodology for
    Conducting Qualitative Research. The Review of Higher Education 18(4),
    423-436. doi:10.1353/rhe.1995.0008.

    National Economic Council, Council of Economic Advisers, and Office of Science
    and Technology Policy (2011). A STRATEGY FOR A MERICAN
    INNOVATION- Securing Our Economic Growth and Prosperity.

    National Research Council. (1996). National Science Education Standards. National
    Academies Press. https://doi.org/10.17226/4962.

    National Research Council. (2011). Successful K-12 STEM Education: Identifying
    Effective Approaches in Science, Technology, Engineering, and Mathematics.
    National Academies Press. https://doi.org/10.17226/13158.

    National Science Board. (1986). Undergraduate science, mathematics and
    engineering education.

    56

    National Science Board (2009). Actions to Improve Science, Technology, Engineering,
    and Mathematics (STEM) Education for all American Students. National
    Science Board, USA.

    Okoli, C., & Pawlowski, S. D. (2004). The Delphi method as a research tool: An
    example, design considerations and applications. Information & Management,
    42(1), 15–29. https://doi.org/10.1016/j.im.2003.11.002

    Organisation for Economic Co-operation and Development (OECD). (2018). The
    future of education and skills: Education 2030, The future we want. Paris:
    Author.

    Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What
    “ideas-about-science” should be taught in school science? A Delphi study of
    the expert community. Journal of Research in Science Teaching, 40(7), 692–
    720. https://doi.org/10.1002/tea.10105

    Penuel, W. R., & Means, B. (2000). Designing a performance assessment to measure
    students’ communication skills in multi-media-supported, project-based
    learning. Citeseer. http://dx.doi.org/10.5539 / jel.v3n4p26

    Quigley C.F., Herro D., Jamil F.M, (2017). Developing a Conceptual Model of
    STEAM Teaching Practices. School Science and Mathematics, 117(1-2):1-12..
    https://doi.org/10.1111/ssm.12201

    Rhonda Christensen and Gerald Knezek. (2015), Active Learning Approaches to
    Integrating Technology into a Middle School Science Curriculum Based on
    21st Century Skills. https://doi.org/10.1007/978-3-319-02573-5_2

    57

    Rolling Jr., J. H. (2016). Reinventing the STEAM engine for art+ design education.
    Art Education, 69(4), 4–7. https://doi.org/10.1080/00043125.2016.1176848

    Sawada, D., Piburn, M.D., Judson, E., Turley, J., Falconer, K., Benford, R. and
    Bloom, I. (2002), Measuring Reform Practices in Science and Mathematics
    Classrooms: The Reformed Teaching Observation Protocol. School Science
    and Mathematics,102: 245-253.
    https://doi.org/10.1111/j.1949-8594.2002.tb17883.x

    Schwarz, C.V., & Gwekwrere, Y.N. (2007). Using a guided inquire and modeling
    instructional framework (EIMA) to support preservice K-8 science teaching.
    Science Education, 91(1), 158-186. https://doi.org/10.1002/sce.20177

    Schwarz, C.V., Reiser, B.J., Davis, E.A., Kenyon, L., Achér, A., Fortus, D., Shwartz,
    Y., Hug, B. and Krajcik, J. (2009). Developing a learning progression for
    scientific modeling: Making scientific modeling accessible and meaningful for
    learners. J. Res. Sci. Teach., 46: 632-654. https://doi.org/10.1002/tea.20311

    Shernoff, D.J., Sinha, S., Bressler, D.M., Lynda Ginsburg. (2017) .Assessing teacher
    education and professional development needs for the implementation of
    integrated approaches to STEM education. International Journal of STEM
    Education 4, 13. https://doi.org/10.1186/s40594-017-0068-1

    Simons, H. (2004). Utilizing Evaluation Evidence to Enhance Professional Practice.
    Evaluation, 10(4), 410–429. https://doi.org/10.1177/1356389004050284

    Stohlmann, M., Moore, T., & Roehrig, G. (2012). Considerations for teaching
    integrated STEM education. Journal of Pre-College Engineering Education
    Research (J-PEER), 2(1), 28–34. https://doi.org/10.5703/1288284314653

    58

    Trowbridge, L. W. & Bybee, R. W. (1990). Becoming a secondary school science
    teacher (5th ed.). Merrill. https://doi.org/10.4324/9780203117910-5

    Ulschak, F. L. (1983). Human resource development: The theory and practice of need
    assessment. Reston, VA: Reston Publishing Company, Inc.

    Wang, H., Moore, T. J., Roehrig, G. H., & Park, M. S. (2011). STEM Integration:
    Teacher Perceptions and Practice. Journal of Pre-College Engineering
    Education Research (J-PEER), 1(2), Article 2.
    https://doi.org/10.5703/1288284314636

    Wang, T. H., Lim, K. Y. T., Lavonen, J. & Clark-Wilson, A. (2019). Maker-Centred
    Science and Mathematics Education: Lenses, Scales and Contexts.
    International Journal of Science and Mathematics Education, 17 (1), 1-11.
    https://doi.org/10.1007/s10763-019-09999-8

    59

    中文參考文獻

    王子華、林紀慧 (2018)。「清華 STEAM 學校」推動創新數理人才在地培育機
    制。科學教育實作學門電子期刊,12。

    王子華(2019)。「清華 STEAM 學校」之 DDMT 教學模式的建構。科學教育實作學
    門電子期刊,17。https://esep.colife.org.tw/journal_pdf/325.pdf

    宋文娟(2001)。一種質量並重的研究法-德菲法在醫務管理學研究領域之應用。
    醫務管理期刊, 2(2),13。 https://doi.org/10.6174/JHM2001.2(2).11

    邱美虹、劉俊庚(2008)。從科學學習的觀點探討模型與建模能力。科學教育月
    刊,314,2-20。 https://doi.org/10.6216/SEM.200811_(314).0001

    張清濱( 2000 )。探究教學法。 師友, 395 , 45-49 。
    https://doi.org/10.6437/EM.200005.0045

    楊千慧、黃美婷(2015)。運用修正式德菲法及層級分析法探討團購行為之關鍵
    因素。中華管理評論國際學報。

    QR CODE