簡易檢索 / 詳目顯示

研究生: 鄧力銘
Denq, Li-Ming
論文名稱: 針對龐大數量內嵌式記憶體之測試技術開發與研究
Testing Techniques for Multiple Heterogeneous Embedded Memories
指導教授: 吳誠文
Wu, Cheng-Wen
口試委員:
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 72
中文關鍵詞: 內嵌式記憶體自我測試自我診斷繞線面積測試成本后羿測試系統
外文關鍵詞: Embedded memory, Built-in self-test, Built-in self-diagnosis, Routing area, Test cost, HOY test system
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今的系統晶片 (System-on-Chip, SOC) 常大量使用數以百計,甚或上千個內嵌式記憶體作為資料儲存用途。為了提高資料傳輸頻寬,常選用高資料位元寬度的內嵌式記憶體規格。然而,針對如此龐大的記憶體數量,以及這種特殊的記憶體規格,在設計內建自我測試電路 (Built-in self-test, BIST) 時,將造成很高的繞線面積代價,進而提高了測試成本。
    過去已有許多研究學者針對上述問題提出解決方案。所提出的BIST電路採用序列式介面 (serial interface) ,例如使用IEEE 1500標準的序列式介面,來減少電路的繞線面積。然而,序列式的電路架構將導致測試時間的大幅拉長,且無法支援即時測試 (at-speed test) 的功能。在本論文中,我們提出了一個混合式 (hybrid) BIST架構,此種架構可以有效的降低BIST電路的繞線面積,同時可兼顧記憶體即時測試與診斷的需求。而其測試時間與傳統並列式(parallel) BIST架構相比只有極少量的增加。
    另一個影響測試成本的因素是測試機台。隨著製程技術的進步,量測內嵌式記憶體需要更昂貴的高階測試機台,這也意味著測試成本也將隨著製程技術的進步而水漲船高。為了降低測試機台的成本,許多不同領域的教授們以及學生們共同開發了后羿測試系統。后羿系統利用無線傳輸的方式以及改良的內嵌式測試電路,並配合測試流程的簡化以及增加測試平行度來達到大幅降低測試成本的目的。在本篇論文中,將先介紹后羿的概念、架構以及測試流程,再來將詳細地說明如何利用后羿測試系統實行內嵌式記憶體的測試與診斷的動作。實驗結果指出,針對業界0.18微米製程的實際例子,后羿測試系統確實可以達到大幅降低整體測試成本的目的。


    It is common that an SOC contains hundreds or even thousands of heterogeneous embedded memories.
    Many of these embedded memories have wide data words, leading to a high routing penalty
    in the BIST circuits. Previous BIST schemes solve the problem by using a serial interface, e.g.,
    a protocol based on the IEEE 1500 architecture or other scan approaches, to reduce routing area
    overhead. However, serial approaches are slow, and they do not allow at-speed test. In this thesis,
    we propose a hybrid BIST architecture that effectively reduces the routing penalty of BIST circuit,
    while allowing at-speed test and diagnosis of memory cores. The test time is close to that of a
    typical parallel BIST method.
    Another issue addressed here is that, embedded memory testing of advanced semiconductor
    products requires expensive Automatic Test Equipments (ATEs), and the cost becomes higher and
    higher as the manufacturing process technology keeps advancing. To address this issue, the HOY
    test system which features wireless communication and enhanced embedded test circuits has been
    developed. HOY reduces test costs dramatically, mainly due to the significant reduction in capital
    investment, simplification in test infrastructure and flow, increase in parallelism, etc. We first
    provide the concept, architecture, and test flow for future semiconductor products tested by HOY.
    We then discuss in detail the testing and diagnosis of embedded memories by HOY. A preliminary
    demonstration system also has been developed, and the experimental results show that the overall
    test cost for an industrial case based on 0.18-micron technology can be greatly reduced.

    1 Introduction 1 1.1 Issues on Multiple Heterogeneous Memory Testing.......1 1.2 Test Issues of Memory Testing with Advanced Process Technology................................................2 1.3 Organization of the Thesis............................3 2 The Challenges of Memory Testing 6 2.1 Memory Functional Fault Models........................6 2.2 March Test Algorithms.................................7 2.3 Review of Memory Built-In Self-Test...................9 2.4 Review of BRAINS......................................9 2.4.1 Architecture of BIST Controller....................12 2.4.2 Architecture of the Sequencer......................13 2.4.3 Architecture of Test Pattern Generator for Heterogeneous Memories...................................14 2.4.4 The Memory BIST Generation Framework...............15 3 Test Architecture for Multiple Embedded Memories 19 3.1 Routing-Area Overhead Analysis.......................22 3.2 BIST Architecture Exploration........................24 3.3 Hybrid BIST Scheme...................................27 3.3.1 FSM of the Serial Interface........................29 3.3.2 Controller Architecture............................30 3.3.3 Command Dispatch in the Sequencer..................31 3.3.4 TPG Architecture...................................32 3.3.5 Diagnosis Mechanism................................34 3.4 Hybrid BIST Features.................................35 3.5 Hardware Implementation..............................38 3.6 Area Overhead Evaluation.............................39 3.6.1 Evaluation Flow....................................40 3.6.2 Evaluation Results.................................42 4 Embedded Memory Test and Diagnosis by the HOY Test system 48 4.1 The HOY Approach.....................................49 4.2 System Architecture..................................51 4.3 Memory Diagnosis by HOY..............................56 4.4 Experimental Results.................................59 5 Conclusions and FutureWork 66 5.1 Conclusions..........................................66 5.2 Future Work..........................................67

    [1] Semiconductor Industry Association, “International
    technology roadmap for semiconductors (ITRS), 2007
    edition”, Dec. 2007.
    [2] K.-L. Cheng, C.-M. Hsueh, J.-R. Huang, J.-C. Yeh,
    C.-T. Huang, and C.-W. Wu, “Automatic generation of
    memory built-in self-test cores for system-on-chip”, in
    Proc. Tenth IEEE Asian Test Symp. (ATS), Kyoto, Nov.
    2001, pp. 91–96.
    [3] K.-L. Cheng, Test Planning and Integration of
    Core-Based System-on-Chip with Multiple Heterogeneous
    Memories, PhD Thesis, Dept. Electrical Engineering,
    National Tsing Hua University, Hsinchu, Taiwan, June
    2004.
    [4] B. Nadeau-Dostie, A. Silburt, and V. K. Agarwal, “A
    serial interfacing technique for external and built-in
    self-testing of embedded memories”, IEEE Design & Test
    of Computers, vol. 7, no. 2, pp. 56–64, Apr. 1990.
    [5] R. C. Aitken, “A modular wrapper enabling high
    speed BIST and repair for small wide memories”, in
    Proc. Int’l Test Conf. (ITC), Charlotte, Oct. 2004, pp.
    997–1005.
    [6] C.-W. Wu, C.-T. Huang, S.-Y. Huang, P.-C. Huang,
    T.-Y. Chang, and Y.-T. Hsing, “The HOY tester—Can IC
    testing go wireless?”, in Proc. Int’l Symp. on VLSI
    Design, Automation, and Test (VLSI-DAT), Hsinchu, Apr.
    2006, pp. 183–186.
    [7] J.-J. Liou, C.-T. Huang, C.-W.Wu, C.-C. Tien,
    C.-H.Wang, H.-P. Ma, Y.-Y. Chen, Y.-C. Hsu, L.-M. Deng,
    C.-J. Chiu, Y.-W. Li, and C.-M. Chang, “A prototype of
    a wireless-based test system”, in Proc. IEEE Int. SOC
    Conf. (SOCC), Newport Beach, USA, Sept. 2007, pp. 225 –
    228.
    [8] C.-W. Wang, K.-L. Cheng, J.-N. Lee, Y.-F. Chou,
    C.-T. Huang, C.-W. Wu, F. Huang, and H.-T. Yang, “Fault
    pattern oriented defect diagnosis for memories”, in
    Proc. Int’l Test Conf. (ITC), Charlotte, Sept. 2003,
    pp. 29–38.
    [9] Y.-C. Hsu, “Design and Implementation of the
    Wireless Test Protocol and Interface”, Master Thesis,
    Dept. Computer Science, National Tsing Hua University,
    Hsinchu, Taiwan, July 2006.
    [10] Semiconductor Industry Association, “International
    technology roadmap for semiconductors (ITRS), 2003
    edition”, Dec. 2003.
    [11] C.-W. Wu, “Testing embedded memories: Is BIST the
    ultimate solution?”, in Proc. Seventh IEEE Asian Test
    Symp. (ATS), Singapore, Dec. 1998, pp. 516–517.
    [12] C.-T. Huang, J.-R. Huang, C.-F. Wu, C.-W. Wu, and
    T.-Y. Chang, “A programmable BIST core for embedded
    DRAM”, IEEE Design & Test of Computers, vol. 16, no. 1,
    pp. 59–70, Jan.-Mar. 1999.
    [13] Y. Zorian, “Embedded memory test & repair:
    Infrastructure IP for SOC yield”, in Proc. Int’l Test
    Conf. (ITC), Baltmore, Oct. 2002, pp. 340–349.
    [14] L.-T. Wang, C.-W. Wu, and X. Wen, Design for
    Testability: VLSI Test Principles and Architectures,
    Elsevier (Morgan Kaufmann), San Francisco, 2006.
    [15] P.-K. Chen, Y.-T. Hsing, and C.-W.Wu, “On
    feasibility of HOY—a wireless test methodology for VLSI
    chips and wafers”, in Proc. Int’l Symp. on VLSI
    Design, Automation, and Test (VLSIDAT), Hsinchu, Apr.
    2006, pp. 243–246.
    [16] R. Dekker, F. Beenker, and L. Thijssen, “Fault
    modeling and test algorithm development for static
    random access memories”, in Proc. Int’l Test Conf.
    (ITC), 1988, pp. 343–352.
    [17] R. Dekker, F. Beenker, and L. Thijssen, “A
    realistic fault model and test algorithm for static
    random access memories”, IEEE Trans. on Computer-Aided
    Design of Integrated Circuits and Systems, vol. 9, no.
    6, pp. 567–572, June 1990.
    [18] A. J. van de Goor, Testing Semiconductor Memories:
    Theory and Practice, ComTex Publishing, Gouda, The
    Netherlands, 1998.
    [19] A. J. van de Goor and Z. Al-Ars, “Functional
    memory faults: a formal notation and a taxonomy”, in
    Proc. IEEE VLSI Test Symp. (VTS), 2000, pp. 281–289.
    [20] S. Hamdioui and A. J. van de Goor, “An
    experimental analysis of spot defects in SRAMs:
    Realistic fault models and tests”, in Proc. Ninth IEEE
    Asian Test Symp. (ATS), Taipei, Dec. 2000, pp.
    131–138.
    [21] S. Hamdioui, A. J. van de Goor, D. Eastwick, and M.
    Rodgers, “Realistic fault models and test procedure for
    multi-port SRAMs”, in Proc. IEEE Int’l Workshop on
    Memory Technology, Design and Testing (MTDT), San Jose,
    Aug. 2001, pp. 65–72.
    [22] A. J. van de Goor, I. B. S. Tlili, and S. Hamdioui,
    “Converting march tests for bit-oriented memories into
    tests for word-oriented memories”, in Proc. IEEE Int’l
    Workshop on Memory Technology, Design and Testing
    (MTDT), San Jose, Aug. 1998, pp. 46–52.
    [23] C.-F. Wu, C.-T. Huang, and C.-W. Wu, “RAMSES: a
    fast memory fault simulator”, in Proc. IEEE Int’l
    Symp. on Defect and Fault Tolerance in VLSI Systems
    (DFT), Albuquerque, Nov. 1999, pp. 165–173.
    [24] C.-F. Wu, C.-T. Huang, K.-L. Cheng, and C.-W. Wu,
    “Fault simulation and test algorithm generation for
    random access memories”, IEEE Trans. on Computer-Aided
    Design of Integrated Circuits and Systems, vol. 21, no.
    4, pp. 480–490, Apr. 2002.
    [25] C.-W. Wang, C.-F. Wu, J.-F. Li, C.-W. Wu, T. Teng,
    K. Chiu, and H.-P. Lin, “A built-in selftest and
    self-diagnosis scheme for embedded SRAM”, in Proc.
    Ninth IEEE Asian Test Symp. (ATS), Taipei, Dec. 2000,
    pp. 45–50.
    [26] C. Cheng, C.-T. Huang, J.-R. Huang, C.-W. Wu, C.-J.
    Wey, and M.-C. Tsai, “BRAINS: A BIST complier for
    embedded memories”, in Proc. IEEE Int’l Symp. on
    Defect and Fault Tolerance in VLSI Systems (DFT),
    Yamanashi, Oct. 2000, pp. 299–307.
    [27] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto,
    and M. Lobetti-Bodorni, “A programmable BIST
    architecture for clusters of multiple-port SRAMs”, in
    Proc. Int’l Test Conf. (ITC), 2000, pp. 557–566.
    [28] M. Lobetti-Bodoni, A. Benso, S. Chiusano, S. ”Di
    Carlo”, G. ”Di Natale”, and P. Prinetto, “An
    effective distributed BIST architecture for RAMs”, in
    Proc. IEEE European Test Workshop (ETW), 2000, pp.
    119–124.
    [29] C.-F. Wu, C.-T. Huang, C.-W. Wang, K.-L. Cheng, and
    C.-W. Wu, “Error catch and analysis for semiconductor
    memories using March tests”, in Proc. IEEE/ACM Int’l
    Conf. on Computer-Aided Design (ICCAD), San Jose, Nov.
    2000, pp. 468–471.
    [30] K.-L. Cheng, C.-W. Wang, J.-N. Lee, Y.-F. Chou,
    C.-T. Huang, and C.-W. Wu, “FAME: a fault-pattern based
    memory failure analysis framework”, in Proc. IEEE/ACM
    Int’l Conf. on Computer-Aided Design (ICCAD), San Jose,
    Nov. 2003, pp. 595–598.
    [31] M. Nicolaidis, V. Castro Alves, and H. Bederr,
    “Testing complex couplings in multiport memories”,
    IEEE Trans. on VLSI Systems, vol. 3, no. 1, pp. 59–71,
    Mar. 1995.
    [32] D. C. Huang and W. B. Jone, “A parallel built-in
    self-diagnostic method for embedded memory arrays”,
    IEEE Trans. on Computer-Aided Design of Integrated
    Circuits and Systems, vol. 21, no. 4, pp. 449–465,
    Apr. 2002.
    [33] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto,
    and M. L. Bodoni, “Programmable built-in self-testing
    of embedded RAM clusters in system-on-chip
    architectures”, IEEE Communications Magazine, vol. 41,
    no. 9, pp. 90–97, Sept. 2003.
    [34] B. Wang and Q. Xu, “Test/repair area overhead
    reduction for small embedded SRAM”, in Proc. 15th IEEE
    Asian Test Symp. (ATS), 2006, pp. 37–42.
    [35] IEEE, “IEEE 1500 standard for embedded core test
    (SECT)”, http://grouper.ieee.org/groups/1500/, 2005.
    [36] L.-M. Denq, Y.-T. Hsing, and C.-W. Wu, “Hybrid
    bist scheme for multiple heterogeneous embedded
    memories”, IEEE Design & Test of Computers, vol. 26,
    pp. 64 – 73, Mar. 2009.
    [37] A. J. van de Goor, Testing Semiconductor Memories:
    Theory and Practice, John Wiley & Sons, Chichester,
    England, 1991.
    [38] J. Gatej, S. Lee, C. Pyron, and R. Raina,
    “Evaluating ate features in terms of test escape rates
    and other cost of test culprits”, in Proc. Int’l Test
    Conf. (ITC), Baltimore, Oct. 2002, pp. 1040–1049.
    [39] R. Rajsuman, N. Masuda, and K. Yamashita,
    “Architecture and design of an open ate to incubate the
    development of third-party instruments”, IEEE Trans. on
    Instrumentation and Measurement, vol. 54, no. 5, pp.
    1678–1698, Oct. 2005.
    [40] H. Eberle, A. Wander, and N. Gura, “Testing
    systems wirelessly”, in Proc. IEEE VLSI Test Symp.
    (VTS), Napa Valley, Apr. 2004, pp. 335–340.
    [41] T.-W. Ko, Y.-T. Hsing, C.-W. Wu, and C.-T. Huang,
    “Stable performance MAC protocol for HOY wireless
    tester under large population”, in Proc. Int’l Symp.
    on VLSI Design, Automation, and Test (VLSI-DAT),
    Hsinchu, Apr. 2007, pp. 160–163.
    [42] C.V. Sellathamby, M.M. Reja, F. Lin, , B. Bai, E.
    Reid, S.H. Slupsky, I.M. Filanovsky, and K. Iniewski,
    “Noncontact wafer probe using wireless probe cards”,
    in Proc. Int’l Test Conf. (ITC), Austin, Oct. 2005,
    pp. 447–452.
    [43] B. Moore, M. Mangrum, C. Sellathamby, M. Reja, T.
    Weng, B. Bai, E. Reid, I. Filanovsky, and S. Slupsky,
    “Non-contact testing for SoC and RCP (SIPs) at advanced
    nodes”, in Proc. Int’l Test Conf. (ITC), Santa Clara,
    Oct. 2008, pp. 1–10.
    [44] I. Schanstra, D. Lukita, A. J. van de Goor, K.
    Veelenturf, and P. J. van Wijnen, “Semiconductor
    manufacturing process monitoring using built-in
    self-test for embedded memories”, in Proc. Int’l Test
    Conf. (ITC), Washington, DC, Oct. 1998, pp. 872–881.
    [45] J. T. Chen, J. Rajski, J. Khare, O. Kebichi, and W.
    Maly, “Enabling embedded memory diagnosis via test
    response compression”, in Proc. IEEE VLSI Test Symp.
    (VTS), Marina Del Rey, California, Apr. 2001, pp.
    292–298.
    [46] J. Segal, A. Jee, D. Lepejian, and B. Chu, “Using
    electrical bitmap results from embedded memory to
    enhance yield”, IEEE Design & Test of Computers, vol.
    15, no. 3, pp. 28–39, May 2001.
    [47] C.-F. Wu, C.-T. Huang, K.-L. Cheng, and C.-W. Wu,
    “Simulation-based test algorithm generation for random
    access memories”, in Proc. IEEE VLSI Test Symp. (VTS),
    Montreal, Apr. 2000, pp. 291–296.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE