研究生: |
鄧力銘 Denq, Li-Ming |
---|---|
論文名稱: |
針對龐大數量內嵌式記憶體之測試技術開發與研究 Testing Techniques for Multiple Heterogeneous Embedded Memories |
指導教授: |
吳誠文
Wu, Cheng-Wen |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 72 |
中文關鍵詞: | 內嵌式記憶體 、自我測試 、自我診斷 、繞線面積 、測試成本 、后羿測試系統 |
外文關鍵詞: | Embedded memory, Built-in self-test, Built-in self-diagnosis, Routing area, Test cost, HOY test system |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今的系統晶片 (System-on-Chip, SOC) 常大量使用數以百計,甚或上千個內嵌式記憶體作為資料儲存用途。為了提高資料傳輸頻寬,常選用高資料位元寬度的內嵌式記憶體規格。然而,針對如此龐大的記憶體數量,以及這種特殊的記憶體規格,在設計內建自我測試電路 (Built-in self-test, BIST) 時,將造成很高的繞線面積代價,進而提高了測試成本。
過去已有許多研究學者針對上述問題提出解決方案。所提出的BIST電路採用序列式介面 (serial interface) ,例如使用IEEE 1500標準的序列式介面,來減少電路的繞線面積。然而,序列式的電路架構將導致測試時間的大幅拉長,且無法支援即時測試 (at-speed test) 的功能。在本論文中,我們提出了一個混合式 (hybrid) BIST架構,此種架構可以有效的降低BIST電路的繞線面積,同時可兼顧記憶體即時測試與診斷的需求。而其測試時間與傳統並列式(parallel) BIST架構相比只有極少量的增加。
另一個影響測試成本的因素是測試機台。隨著製程技術的進步,量測內嵌式記憶體需要更昂貴的高階測試機台,這也意味著測試成本也將隨著製程技術的進步而水漲船高。為了降低測試機台的成本,許多不同領域的教授們以及學生們共同開發了后羿測試系統。后羿系統利用無線傳輸的方式以及改良的內嵌式測試電路,並配合測試流程的簡化以及增加測試平行度來達到大幅降低測試成本的目的。在本篇論文中,將先介紹后羿的概念、架構以及測試流程,再來將詳細地說明如何利用后羿測試系統實行內嵌式記憶體的測試與診斷的動作。實驗結果指出,針對業界0.18微米製程的實際例子,后羿測試系統確實可以達到大幅降低整體測試成本的目的。
It is common that an SOC contains hundreds or even thousands of heterogeneous embedded memories.
Many of these embedded memories have wide data words, leading to a high routing penalty
in the BIST circuits. Previous BIST schemes solve the problem by using a serial interface, e.g.,
a protocol based on the IEEE 1500 architecture or other scan approaches, to reduce routing area
overhead. However, serial approaches are slow, and they do not allow at-speed test. In this thesis,
we propose a hybrid BIST architecture that effectively reduces the routing penalty of BIST circuit,
while allowing at-speed test and diagnosis of memory cores. The test time is close to that of a
typical parallel BIST method.
Another issue addressed here is that, embedded memory testing of advanced semiconductor
products requires expensive Automatic Test Equipments (ATEs), and the cost becomes higher and
higher as the manufacturing process technology keeps advancing. To address this issue, the HOY
test system which features wireless communication and enhanced embedded test circuits has been
developed. HOY reduces test costs dramatically, mainly due to the significant reduction in capital
investment, simplification in test infrastructure and flow, increase in parallelism, etc. We first
provide the concept, architecture, and test flow for future semiconductor products tested by HOY.
We then discuss in detail the testing and diagnosis of embedded memories by HOY. A preliminary
demonstration system also has been developed, and the experimental results show that the overall
test cost for an industrial case based on 0.18-micron technology can be greatly reduced.
[1] Semiconductor Industry Association, “International
technology roadmap for semiconductors (ITRS), 2007
edition”, Dec. 2007.
[2] K.-L. Cheng, C.-M. Hsueh, J.-R. Huang, J.-C. Yeh,
C.-T. Huang, and C.-W. Wu, “Automatic generation of
memory built-in self-test cores for system-on-chip”, in
Proc. Tenth IEEE Asian Test Symp. (ATS), Kyoto, Nov.
2001, pp. 91–96.
[3] K.-L. Cheng, Test Planning and Integration of
Core-Based System-on-Chip with Multiple Heterogeneous
Memories, PhD Thesis, Dept. Electrical Engineering,
National Tsing Hua University, Hsinchu, Taiwan, June
2004.
[4] B. Nadeau-Dostie, A. Silburt, and V. K. Agarwal, “A
serial interfacing technique for external and built-in
self-testing of embedded memories”, IEEE Design & Test
of Computers, vol. 7, no. 2, pp. 56–64, Apr. 1990.
[5] R. C. Aitken, “A modular wrapper enabling high
speed BIST and repair for small wide memories”, in
Proc. Int’l Test Conf. (ITC), Charlotte, Oct. 2004, pp.
997–1005.
[6] C.-W. Wu, C.-T. Huang, S.-Y. Huang, P.-C. Huang,
T.-Y. Chang, and Y.-T. Hsing, “The HOY tester—Can IC
testing go wireless?”, in Proc. Int’l Symp. on VLSI
Design, Automation, and Test (VLSI-DAT), Hsinchu, Apr.
2006, pp. 183–186.
[7] J.-J. Liou, C.-T. Huang, C.-W.Wu, C.-C. Tien,
C.-H.Wang, H.-P. Ma, Y.-Y. Chen, Y.-C. Hsu, L.-M. Deng,
C.-J. Chiu, Y.-W. Li, and C.-M. Chang, “A prototype of
a wireless-based test system”, in Proc. IEEE Int. SOC
Conf. (SOCC), Newport Beach, USA, Sept. 2007, pp. 225 –
228.
[8] C.-W. Wang, K.-L. Cheng, J.-N. Lee, Y.-F. Chou,
C.-T. Huang, C.-W. Wu, F. Huang, and H.-T. Yang, “Fault
pattern oriented defect diagnosis for memories”, in
Proc. Int’l Test Conf. (ITC), Charlotte, Sept. 2003,
pp. 29–38.
[9] Y.-C. Hsu, “Design and Implementation of the
Wireless Test Protocol and Interface”, Master Thesis,
Dept. Computer Science, National Tsing Hua University,
Hsinchu, Taiwan, July 2006.
[10] Semiconductor Industry Association, “International
technology roadmap for semiconductors (ITRS), 2003
edition”, Dec. 2003.
[11] C.-W. Wu, “Testing embedded memories: Is BIST the
ultimate solution?”, in Proc. Seventh IEEE Asian Test
Symp. (ATS), Singapore, Dec. 1998, pp. 516–517.
[12] C.-T. Huang, J.-R. Huang, C.-F. Wu, C.-W. Wu, and
T.-Y. Chang, “A programmable BIST core for embedded
DRAM”, IEEE Design & Test of Computers, vol. 16, no. 1,
pp. 59–70, Jan.-Mar. 1999.
[13] Y. Zorian, “Embedded memory test & repair:
Infrastructure IP for SOC yield”, in Proc. Int’l Test
Conf. (ITC), Baltmore, Oct. 2002, pp. 340–349.
[14] L.-T. Wang, C.-W. Wu, and X. Wen, Design for
Testability: VLSI Test Principles and Architectures,
Elsevier (Morgan Kaufmann), San Francisco, 2006.
[15] P.-K. Chen, Y.-T. Hsing, and C.-W.Wu, “On
feasibility of HOY—a wireless test methodology for VLSI
chips and wafers”, in Proc. Int’l Symp. on VLSI
Design, Automation, and Test (VLSIDAT), Hsinchu, Apr.
2006, pp. 243–246.
[16] R. Dekker, F. Beenker, and L. Thijssen, “Fault
modeling and test algorithm development for static
random access memories”, in Proc. Int’l Test Conf.
(ITC), 1988, pp. 343–352.
[17] R. Dekker, F. Beenker, and L. Thijssen, “A
realistic fault model and test algorithm for static
random access memories”, IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 9, no.
6, pp. 567–572, June 1990.
[18] A. J. van de Goor, Testing Semiconductor Memories:
Theory and Practice, ComTex Publishing, Gouda, The
Netherlands, 1998.
[19] A. J. van de Goor and Z. Al-Ars, “Functional
memory faults: a formal notation and a taxonomy”, in
Proc. IEEE VLSI Test Symp. (VTS), 2000, pp. 281–289.
[20] S. Hamdioui and A. J. van de Goor, “An
experimental analysis of spot defects in SRAMs:
Realistic fault models and tests”, in Proc. Ninth IEEE
Asian Test Symp. (ATS), Taipei, Dec. 2000, pp.
131–138.
[21] S. Hamdioui, A. J. van de Goor, D. Eastwick, and M.
Rodgers, “Realistic fault models and test procedure for
multi-port SRAMs”, in Proc. IEEE Int’l Workshop on
Memory Technology, Design and Testing (MTDT), San Jose,
Aug. 2001, pp. 65–72.
[22] A. J. van de Goor, I. B. S. Tlili, and S. Hamdioui,
“Converting march tests for bit-oriented memories into
tests for word-oriented memories”, in Proc. IEEE Int’l
Workshop on Memory Technology, Design and Testing
(MTDT), San Jose, Aug. 1998, pp. 46–52.
[23] C.-F. Wu, C.-T. Huang, and C.-W. Wu, “RAMSES: a
fast memory fault simulator”, in Proc. IEEE Int’l
Symp. on Defect and Fault Tolerance in VLSI Systems
(DFT), Albuquerque, Nov. 1999, pp. 165–173.
[24] C.-F. Wu, C.-T. Huang, K.-L. Cheng, and C.-W. Wu,
“Fault simulation and test algorithm generation for
random access memories”, IEEE Trans. on Computer-Aided
Design of Integrated Circuits and Systems, vol. 21, no.
4, pp. 480–490, Apr. 2002.
[25] C.-W. Wang, C.-F. Wu, J.-F. Li, C.-W. Wu, T. Teng,
K. Chiu, and H.-P. Lin, “A built-in selftest and
self-diagnosis scheme for embedded SRAM”, in Proc.
Ninth IEEE Asian Test Symp. (ATS), Taipei, Dec. 2000,
pp. 45–50.
[26] C. Cheng, C.-T. Huang, J.-R. Huang, C.-W. Wu, C.-J.
Wey, and M.-C. Tsai, “BRAINS: A BIST complier for
embedded memories”, in Proc. IEEE Int’l Symp. on
Defect and Fault Tolerance in VLSI Systems (DFT),
Yamanashi, Oct. 2000, pp. 299–307.
[27] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto,
and M. Lobetti-Bodorni, “A programmable BIST
architecture for clusters of multiple-port SRAMs”, in
Proc. Int’l Test Conf. (ITC), 2000, pp. 557–566.
[28] M. Lobetti-Bodoni, A. Benso, S. Chiusano, S. ”Di
Carlo”, G. ”Di Natale”, and P. Prinetto, “An
effective distributed BIST architecture for RAMs”, in
Proc. IEEE European Test Workshop (ETW), 2000, pp.
119–124.
[29] C.-F. Wu, C.-T. Huang, C.-W. Wang, K.-L. Cheng, and
C.-W. Wu, “Error catch and analysis for semiconductor
memories using March tests”, in Proc. IEEE/ACM Int’l
Conf. on Computer-Aided Design (ICCAD), San Jose, Nov.
2000, pp. 468–471.
[30] K.-L. Cheng, C.-W. Wang, J.-N. Lee, Y.-F. Chou,
C.-T. Huang, and C.-W. Wu, “FAME: a fault-pattern based
memory failure analysis framework”, in Proc. IEEE/ACM
Int’l Conf. on Computer-Aided Design (ICCAD), San Jose,
Nov. 2003, pp. 595–598.
[31] M. Nicolaidis, V. Castro Alves, and H. Bederr,
“Testing complex couplings in multiport memories”,
IEEE Trans. on VLSI Systems, vol. 3, no. 1, pp. 59–71,
Mar. 1995.
[32] D. C. Huang and W. B. Jone, “A parallel built-in
self-diagnostic method for embedded memory arrays”,
IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, vol. 21, no. 4, pp. 449–465,
Apr. 2002.
[33] A. Benso, S. Di Carlo, G. Di Natale, P. Prinetto,
and M. L. Bodoni, “Programmable built-in self-testing
of embedded RAM clusters in system-on-chip
architectures”, IEEE Communications Magazine, vol. 41,
no. 9, pp. 90–97, Sept. 2003.
[34] B. Wang and Q. Xu, “Test/repair area overhead
reduction for small embedded SRAM”, in Proc. 15th IEEE
Asian Test Symp. (ATS), 2006, pp. 37–42.
[35] IEEE, “IEEE 1500 standard for embedded core test
(SECT)”, http://grouper.ieee.org/groups/1500/, 2005.
[36] L.-M. Denq, Y.-T. Hsing, and C.-W. Wu, “Hybrid
bist scheme for multiple heterogeneous embedded
memories”, IEEE Design & Test of Computers, vol. 26,
pp. 64 – 73, Mar. 2009.
[37] A. J. van de Goor, Testing Semiconductor Memories:
Theory and Practice, John Wiley & Sons, Chichester,
England, 1991.
[38] J. Gatej, S. Lee, C. Pyron, and R. Raina,
“Evaluating ate features in terms of test escape rates
and other cost of test culprits”, in Proc. Int’l Test
Conf. (ITC), Baltimore, Oct. 2002, pp. 1040–1049.
[39] R. Rajsuman, N. Masuda, and K. Yamashita,
“Architecture and design of an open ate to incubate the
development of third-party instruments”, IEEE Trans. on
Instrumentation and Measurement, vol. 54, no. 5, pp.
1678–1698, Oct. 2005.
[40] H. Eberle, A. Wander, and N. Gura, “Testing
systems wirelessly”, in Proc. IEEE VLSI Test Symp.
(VTS), Napa Valley, Apr. 2004, pp. 335–340.
[41] T.-W. Ko, Y.-T. Hsing, C.-W. Wu, and C.-T. Huang,
“Stable performance MAC protocol for HOY wireless
tester under large population”, in Proc. Int’l Symp.
on VLSI Design, Automation, and Test (VLSI-DAT),
Hsinchu, Apr. 2007, pp. 160–163.
[42] C.V. Sellathamby, M.M. Reja, F. Lin, , B. Bai, E.
Reid, S.H. Slupsky, I.M. Filanovsky, and K. Iniewski,
“Noncontact wafer probe using wireless probe cards”,
in Proc. Int’l Test Conf. (ITC), Austin, Oct. 2005,
pp. 447–452.
[43] B. Moore, M. Mangrum, C. Sellathamby, M. Reja, T.
Weng, B. Bai, E. Reid, I. Filanovsky, and S. Slupsky,
“Non-contact testing for SoC and RCP (SIPs) at advanced
nodes”, in Proc. Int’l Test Conf. (ITC), Santa Clara,
Oct. 2008, pp. 1–10.
[44] I. Schanstra, D. Lukita, A. J. van de Goor, K.
Veelenturf, and P. J. van Wijnen, “Semiconductor
manufacturing process monitoring using built-in
self-test for embedded memories”, in Proc. Int’l Test
Conf. (ITC), Washington, DC, Oct. 1998, pp. 872–881.
[45] J. T. Chen, J. Rajski, J. Khare, O. Kebichi, and W.
Maly, “Enabling embedded memory diagnosis via test
response compression”, in Proc. IEEE VLSI Test Symp.
(VTS), Marina Del Rey, California, Apr. 2001, pp.
292–298.
[46] J. Segal, A. Jee, D. Lepejian, and B. Chu, “Using
electrical bitmap results from embedded memory to
enhance yield”, IEEE Design & Test of Computers, vol.
15, no. 3, pp. 28–39, May 2001.
[47] C.-F. Wu, C.-T. Huang, K.-L. Cheng, and C.-W. Wu,
“Simulation-based test algorithm generation for random
access memories”, in Proc. IEEE VLSI Test Symp. (VTS),
Montreal, Apr. 2000, pp. 291–296.