研究生: |
顧哲瑋 Ku, Che-Wei |
---|---|
論文名稱: |
數學建模教學策略融入DDMT教學模式對國中學生數學學習成效影響之研究 A Study on the Effectiveness of Integrating Mathematics Modeling Teaching Strategies into the DDMT teaching Model on Mathematics Learning Achievement of Junior High School Students |
指導教授: |
王子華
Wang, Tzu-Hua 蔡寶桂 Tsai, Pao-Kuei |
口試委員: |
周金城
Jhou, Jin-Cheng 邱富源 Chiu, Fu-Yuan |
學位類別: |
碩士 Master |
系所名稱: |
竹師教育學院 - 竹師教育學院跨領域 STEAM 教育碩士在職專班 Master Program in Interdisciplinary STEAM Education |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 156 |
中文關鍵詞: | 數學建模 、DDMT教學模式 、學習成效 、基本計數原理 、函數 |
外文關鍵詞: | mathematical modeling, DDMT teaching model, learning outcomes, Fundamental Counting Principle, Functions |
相關次數: | 點閱:46 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討實施數學建模教學策略融入DDMT教學模式後,探討對9年級學生數學學習態度、數學「基本計數原理及函數」概念的學習成效,以及探討在課程實施後,學生的回饋及對教學模式的建議。研究者採用不等組前、後測準實驗研究法,進行10節課的教學實驗,主題為「外送-最佳時間之數學模型」,實驗設計分為兩組:數學建模策略融入DDMT教學模式的實驗組、控制組為教師直接教學策略下的建模教學。研究工具包含:「基本計數原理及函數」、「數學學習態度量表」之前、後測以及學生反思回饋單。資料分析方法包含:敘述性統計、成對樣本t檢定、獨立樣本t檢定、單因子共變數以及質性的分析。本研究主要結論分述如下:
(一) 以數學建模融入DDMT模式的教學在「函數概念」的學習成效優於控制組。
(二) 以數學建模融入DDMT模式的教學的學生在「樹狀圖及窮舉法」及「函數」概念上有顯著進步。
(三) 教師直接教學策略下的建模教學的學生在「樹狀圖及窮舉法」概念上有顯著進步。
(四) 數學建模教學法在DDMT教學模式下能引起學生較高層次的思考。
(五) 數學建模教學法在DDMT教學模式下在較能引發學生後設思考能力。
(六) 進行數學建模的歷程是需要長時間且連續的進行。
(七) DDMT教學模式對STEAM教育的創造力有正向的影響。
(八) 數學建模策略融入DDMT教學模式需要多位協同教師合作
(九) 數學建模策略融入DDMT教學模式歷程中須隨時緊扣核心問題
This research aimed to investigate the effects of incorporating mathematics modeling teaching strategies into the DDMT (Direct Design of Mathematical Tasks) instructional model on 9th-grade students. The study focused on their attitudes towards mathematics, learning outcomes in the "Fundamental Counting Principle and Functions" concept, and also explored student feedback and suggestions regarding the instructional approach. The researcher employed a non-equivalent pretest-posttest quasi-experimental design, conducting a 10-lesson teaching experiment with the theme "Delivery Service - Optimal Time Mathematical Model." The experiment included two groups: the experimental group received mathematics modeling integrated with the DDMT instructional model, while the control group received direct teaching strategies for modeling instruction from teachers. Research tools included pretest and posttest assessments for "Fundamental Counting Principle and Functions," the "Mathematics Learning Attitude Scale," and student reflective feedback forms. Data analysis methods involved descriptive statistics, paired-sample t-test, independent-sample t-test, one-way ANCOVA, and qualitative analysis.
The main conclusions of this study are as follows:
1. Teaching with mathematics modeling integrated into the DDMT model resulted in better learning outcomes for the "Functions" concept compared to the control group.
2. Students taught with mathematics modeling integrated into the DDMT model showed significant improvement in understanding "Tree Diagram and Exhaustion Method" and "Functions" concepts.
3. Students who underwent modeling instruction using direct teaching strategies also demonstrated significant progress in understanding the "Tree Diagram and Exhaustion Method" concept.
4. Mathematics modeling instruction within the DDMT model stimulated higher-order thinking in students.
5. Mathematics modeling instruction within the DDMT model enhanced students' metacognitive thinking abilities.
6. The process of engaging in mathematical modeling required substantial and continuous time commitment.
7. The DDMT instructional model positively influenced creativity in STEAM (Science, Technology, Engineering, Arts, Mathematics) education.
8. Implementing mathematics modeling strategies within the DDMT instructional model necessitated collaborative efforts among multiple teachers.
9. During the process of implementing mathematics modeling strategies within the DDMT instructional model, it was crucial to stay closely connected to core issues.
1. 王子華(2019)。「清華 STEAM 學校」之 DDMT 教學模式的建構。科學教育實作學門電子期刊,17。https://esep.colife.org.tw/journal_pdf/325.pdf
2. 王子華、林紀慧 (2018)。「清華 STEAM 學校」推動創新數理人才在地培育機制。科學教育實作學門電子期刊,12。https://esep.colife.org.tw/12/journal
3. 王明慧、柳 賢、洪振方(2005) 。高一學生在解題歷程中的數學建模之分析,屏東教育大學 學報第二時四期。
4. 吳明隆、涂金堂(2012)。 SPSS 與統計應用分析 (二版)。臺北市: 五南。
5. 李祥宇(2012)。數學建模教學對於高中生學習成效的影響之研究-以排列、組合為例。國立高雄師範大學。
6. 李默英(1983)。性別、年級、數學科學習態度、性別角色與數學成就之關係(末出版之碩士論文)。國立政治大學,台北市。
7. 汪瑞芝、廖玲珠 (2008)。 會計習作課程之學習行為與學習成效。 當代會計, 9(1),105-130。 http://doi.org/10.6675/JCA.2008.9.1.04
8. 周玉秀(2006)。從PISA 看數學素養與中小學數學教育。科學教育月刊,293,2-21。 http://doi.org/10.6216/SEM.200610_(293).0001
9. 林碧珍(2020)。素養導向評量的「真實」情境?是對解題者?還是對情境本身?央團一、二月數學月刊,第十五期https://cirn.moe.edu.tw/Upload/file/33396/86485.pdf
10. 姜啟源(2001)。數學實驗與數學建模 (Doctoral dissertation)。
11. 清華STEAM學校(2018年6月8日)。「清華STEAM學校」理念。https://tsinghuasteam.org/
12. 陳冠州(2008)。數學建模活動下國小五年級學生代數思考及其發展歷程之研究。國立彰化師範大學。
13. 黃志賢 (2014)。 數學建模-社會文化與集體論證的觀點。 科學教育學刊,22(3), 237-258。 http://doi.org/10.6173/CJSE.2014.2203.01
14. 凱琳、林福來 (2006)。探討高中數學教學融入建模活動的支撐策略及促進參與教師反思的潛在機制。 科學教育學刊, 14(5), 517-543。 http://doi.org/10.6173/CJSE.2006.1405.02
15. 楊凱琳、林福來、蕭志如(2012)。數學建模評量規準之研究。科學教育學刊,20(4),319-342。 http://doi.org/10.6173/CJSE.2012.2004.02
16. 趙慧臣、陸曉婷(2016)。開展STEAM教育提高學生創新能力——訪美國STEAM教育知名學者格雷特·亞克門教授。開放教育研究,22(5), 5-6。
17. 蔡華華、張雅萍 (2007)。 學習動機對學習成效之影響-以領導行為為干擾變數。 中華管理學報,8(4),1-17。 http://doi.org/10.30053/CHJM.200712.0001
18. Adams, R. S.,&Forin,T.(2014). Working to gether across disciplines. Engineering Practice in a Global Context, 101-27. http://doi.org/10.1201/b15792-10
19. Aiken, L. R., & Groth-Marnat, G. (2006). Psychological testing and assessment 12th ed.
20. Berland, L., Steingut, R., & Ko, P. (2014). High school student perceptions of the utility of the engineering design process: Creating opportunities to engage in engineering practices and apply math and science content. Journal of Science Education and Technology, 23(6), 705-720. http://doi.org/10.1007/s10956-014-9498-4
21. Bloom, B. S. (1994). Reflections on the development and use of the taxonomy. Yearbook: National Society for the Study of Education, 92(2), 1-8.
22. Blum, W., & Ferri, R. B. (2009). Mathematical modelling: Can it be taught and learnt?. Journal of mathematical modelling and application, 1(1), 45-58.
23. Blum, W., & Leiss, D. (2005). “Filling Up“-the problem of independence-preserving teacher interventions in lessons with demanding modelling tasks. In CERME 4–Proceedings of the Fourth Congress of the European Society for Research in Mathematics Education (pp. 1623-1633). Sant Feliu de Guíxois: FUNDEMI IQS–Universitat.
24. Carmines, E. G., & Zeller, R. A. (1979). Reliability and validity assessment. Sage publications.
25. Csikszentmihalyi, M. (2000). Beyond boredom and anxiety (25. Anniversary ed.). San Francisco: Jossey-Bass Publishers.
26. Drake, S. M., & Burns, R. C. (2004). Meeting standards through integrated curriculum. ASCD.
27. Erbas, A. K., Kertil, M., Çetinkaya, B., Cakiroglu, E., Alacaci, C., & Bas, S. (2014). Mathematical modeling in mathematics education: basic concepts and approaches. Educational Sciences: Theory and Practice, 14(4), 1621-1627. http://doi.org/10.12738/estp.2014.4.2039
28. Ferri, R. B. (2006). Theoretical and empirical differentiations of phases in the modelling process. ZDM, 38(2), 86-95. http://doi.org/10.1007/BF02655883
29. Fennema, E. & Sherman, J. (1977). Sex-related differences in mathematics
achievement, spatial visualization, and affective factors. American Educatioal Research Journal, 14(1), 51-71. http://doi.org/10.3102/00028312014001051
30. Gao, X., Li, P., Shen, J., & Sun, H. (2020). Reviewing assessment of student learning in interdisciplinary STEM education. International Journal of STEM Education, 7(1), 1-14. http://doi.org/10.1186/s40594-020-00225-4
31. Gardner, H. (1993). Creating minds: An anatomy of creativity seen through the lives of Freud. Einstein. Picasso. Stravinsky. Eliot. Graham, and Gandhi. Basic Books. Gl_aveanu, V. P. (2010). Paradigms
32. Guilford, J. P. (1950). Creativity. American Psychologist, 5(9), 444–454. https://doi.org/10.1037/h0063487
33. Haines, C., & Crouch, R. (2007). Mathematical and applications: Ability and competence frameworks. In W. Blum, P. L. Galbraith, H. W. Henn & M. Niss (Eds.), Modeling and applications in mathematics education, the 14th ICMI study (pp. 417-424). New York: Springer.
34. Hoi, H. T. (2021). Applying STEAM Teaching Method to Primary Schools to Improve the Quality of Teaching and Learning for Children. International Journal of Early Childhood Special Education, 13(2). http://doi.org/10.9756/INT-JECSE/V13I2.211149
35. Hsiao, P. W., & Su, C. H. (2021). A study on the impact of STEAM education for sustainable development courses and its effects on student motivation and learning. Sustainability, 13(7), 3772. http://doi.org/10.3390/su13073772
36. Kehle, P. E. & Lester, F. K. (2003). A Semiotic Look and Modeling Behavior. In R. A. Lesh (Ed.), Beyond Constructivism: Models and Modeling Perspectives on Mathematics Problem Solving, Learning, and Teaching (pp. 97-122). Mahwah: Lawrence Erlbaum Associates.
37. Land, M. H. (2013). Full STEAM ahead: The benefits of integrating the arts into STEM. Procedia Computer Science, 20, 547-552. http://doi.org/10.1016/j.procs.2013.09.317
38. Lanzing, J. W. A., & Stanchev, I. (1994). Visual aspects of courseware engineering. Journal of Computer Assisted Learning, 10(2), 69-80. http://doi.org/10.1111/j.1365-2729.1994.tb00284.x
Lehrer, R., & Schauble, L. (2003). Origins and evolution of model-based reasoning in mathematics and science. Beyond constructivism:Models and modeling perspectives on mathematics problem solving, learning, and teaching, 59-70.
39. Lesh, R. A., & Doerr, H. M. (2003). Beyond constructivism: Models and modeling perspectives on mathematics problem solving, learning, and teaching. Routledge.
40. Lesh, R., Post, T. & Behr M. (1987). Representations and translations among representations in mathematics learning and problem solving. Problems of representation in the teaching and learning of mathematics (pp 33-40). Hillsdale, NJ: Lawrence Erlbaum.
41. Linder, S. M., Emerson, A. M., Heffron, B., Shevlin, E. & Vest, A. (2016). STEM use in early childhood education: Viewpoints from the field. YC Young Children, 71(3), 87–91.
42. Little, C., & Jones, K. (2010). The effect of using real world contexts in post-16 mathematics questions. Proceedings of the British Society for Research into Learning Mathematics, 30(1), 137-144.
43. Lu, S. Y., Lo, C. C., & Syu, J. Y. (2021). Project-based learning oriented STEAM: The case of micro–bit paper-cutting lamp. International Journal of Technology and Design Education, 1-23. http://doi.org/10.1007/s10798-021-09714-1
44. Ma, X. (1999). A meta-analysis of the relationship between anxiety toward mathematics and achievement in mathematics. Journal for Research in Mathematics Education, 30(5), 520-540. doi: 10.2307/749772 http://doi.org/10.2307/749772
45. Maki, D. P., & Thompson, M. (1973). Mathematical models and applications: With emphasis on the social, life, and management sciences. Englewood Cliffs, NJ: Prentice-Hall.
46. Mavri, A., Ioannou, A., & Loizides, F. (2020b). Design students meet industry players: Feedback and creativity in communities of practice. Thinking Skills and Creativity, 37, 100684. http://doi.org/10.1016/j.tsc.2020.100684
47. Moore, T. J., Johnston, A. C., & Glancy, A. W. (2020). STEM integration: A synthesis of conceptual frameworks and definitions. In Handbook of research on STEM education (pp. 3-16). Routledge.
48. Mousoulides, N., Sriraman, B. H. A. R. A. T. H., & Christou, C. O. N. S. T. A. N. T. I. N. O. S. (2007). From problem solving to modelling. Education, 12(1), 23-47.
49. Niss, M. (2003). Mathematical competencies and the learning of mathematics: The Danish KOM project. Paper presented at the 3rd Mediterranean conference on mathematical education.
50. Quigley, C. F., Herro, D., & Jamil, F. M. (2017). Developing a conceptual model of STEAM teaching practices. School science and mathematics, 117(1-2), 1-12. http://doi.org/10.1111/ssm.12201
51. Rodriguez, A. J. (1997). The dangerous discourse of invisibility: A critique of the National Research Council's National Science Education Standards. Journal of Research in Science Teaching: The Official Journal of the National Association for Research in Science Teaching, 34(1), 19-37. http://doi.org/10.1002/(SICI)1098-2736(199701)34:1<19::AID-TEA3>3.0.CO;2-R
52. Satchwell, R.E., & Loepp, F.L. (2002). Designing and Implementing an Integrated Mathematics, Science, and Technology Curriculum for the Middle School. Journal of Industrial Teacher Education, 39, 41-66.
53. Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. In D. A. Grouws (Ed.), Handbook for research on mathematics teaching and learning (pp. 334-370). Macmillan. http://doi.org/10.1177/002205741619600202
54. Sweller, J., Van Merrienboer, J. J., & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational psychology review, 10(3), 251-296.
55. Thibaut, L., Ceuppens, S., De Loof, H., De Meester, J., Goovaerts, L., Struyf, A., ... & Depaepe, F. (2018). Integrated STEM education: A systematic review of instructional practices in secondary education. European Journal of STEM Education, 3(1), 2. http://doi.org/10.20897/ejsteme/85525
56. Thuneberg, H. M., Salmi, H. S., & Bogner, F. X. (2018). How creativity, autonomy and visual reasoning contribute to cognitive learning in a STEAM hands-on inquiry-based math module. Thinking Skills and Creativity, 29, 153-160. http://doi.org/10.1016/j.tsc.2018.07.003
57. Treffinger, D. J., Young, G. C., Selby, E. C., & Shepardson, C. (2002). Assessing creativity: A guide for educators. National Research Center on the Gifted and Talented. Retrieved June 1, 2020.
58. Verschaffel, L., Greer, B., & De Corte, E. (2002). Everyday knowledge and mathematical modeling of school word problems. In K. P. Gravemeijer, R. Lehrer,H. J. van Oers, & L. Verschaffel (Eds.), Symbolizing, modeling and tool use in mathematics education (pp. 171-195). Dordrecht, The Netherlands: Kluwer Academic Publishers. http://doi.org/10.1007/978-94-017-3194-2_16
59. Wahyuningsih, S., Nurjanah, N. E., Rasmani, U. E. E., Hafidah, R., Pudyaningtyas, A. R., & Syamsuddin, M. M. (2020). STEAM learning in early childhood education: A literature review. International Journal of Pedagogy and Teacher Education, 4(1), 33-44. http://doi.org/10.20961/ijpte.v4i1.39855
60. White, D. W.(2014). What is STEM education and why is it important. Florida Association of Teacher Educators Journal, 1(14), 1-9.
61. Wu, C. H., Liu, C. H., & Huang, Y. M. (2022). The exploration of continuous learning intention in STEAM education through attitude, motivation, and cognitive load. International Journal of STEM Education, 9(1), 1-22. http://doi.org/10.1186/s40594-022-00346-y
62. Yakman, G. (2008). STEAM education. An overview of creation a model of integrative education. PATT.
63. Yakman, G. (2010). What is the point of STE@ M?–A Brief Overview. Steam: A Framework for Teaching Across the Disciplines. STEAM Education, 7(9), 1-9.