簡易檢索 / 詳目顯示

研究生: 蔡燿宇
Tsai, Yao-Yu
論文名稱: 探討不同黏著劑應用在鋰電池矽基陽極之比較
Comparative studies of the effect of different binders used in silicon-based anodes for lithium-ion batteries
指導教授: 蔡哲正
Tsai, Cho-Jen
口試委員: 林居南
俎永熙
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 65
中文關鍵詞: 鋰電池矽基陽極黏著劑
外文關鍵詞: lithium-ion battery, silicon-based anode, binder
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矽因擁有最大的理論電容量而被看好可以取代石墨成為新一代鋰離子電池的陽極材料。然而,充放電過程中大量的體積變化是造成電池衰退的主因。近幾年來,黏著劑在矽基陽極上所扮演的角色開始受到重視。本研究選取了幾種目前用在矽基陽極上電性表現較好的黏著劑,以相同的條件做電性測試,並以其他性質測試做輔助,目的是找出最適合矽基陽極的黏著劑。


    Silicon, having the highest theoretical energy capacity, is an attractive anode material for next-generation lithium-ion batteries. However, because of huge volume changes during battery operation, silicon-based anode has yet to be commercialized. In the past decade, binder, an electrochemically inactive material, has been noticed to play an important role in battery performance. Many researchers were making a lot of effort in searching for new binders, but these binders were being tested under different conditions by different groups. This study aimed to make a comparison between different types of binders, trying to find out the most suitable binder for silicon-based anodes.

    目錄 第一章 緒論 4 第二章 實驗步驟 11 2.1 聚丙烯酸基黏著劑製備 11 2.2 電極製備 11 2.3 經氫氟酸處理之奈米矽粉 12 2.4 電極片輾壓與裁切 13 2.5 電池組裝 13 2.6 循環壽命測試(cycle-life test) 14 2.7 自放電測試(self-discharge test) 14 2.8 循環伏安法 15 2.9 膨脹測試 15 2.10 剝離測試 15 2.11 掃描式電子顯微鏡 16 2.12 X-光繞射分析 16 第三章 結果與討論 18 3.1 奈米矽粉之材料分析 18 3.2 氫鍵的重要性 20 3.3 電極內孔隙對電性的影響 25 3.4 不同黏著劑之比較 31 3.4.1 不同黏著劑之電極的表面形貌 31 3.4.2 聚丙烯酸基系列黏著劑之比較 39 3.4.3 部分置換之聚丙烯酸基系列 41 3.4.4 PVdF、NaPAA與NaAlg黏著劑之比較 43 3.4.5 循環伏安法 45 3.4.6 結晶性分析 50 3.4.7 自放電測試 53 3.4.8 膨脹測試(swelling test) 56 3.4.9 剝離測試(peeling test) 58 第四章 結論 60 4.1 氫鍵的重要性 60 4.2 孔隙之影響 60 4.3 不同黏著劑之比較 60 第五章 參考文獻 62

    [1] Uday Kasavajjula, Chunsheng Wang, and A. John Appleby, “Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells”, Journal of Power Sources, 2007, 163, 1003–1039.
    [2] Jeannine R. Szczech and Song Jin, “Nanostructured silicon for high capacity lithium battery anodes”, Energy Environ. Sci., 2011, 4, 56-72.
    [3] Lockwood, David J (Eds.), Nanostructure Science and Technology, Springer, 2013, 87.
    [4] M. N. Obrovacz and Leif Christensen, “Structural Changes in Silicon Anodes during Lithium Insertion/Extraction”, Electrochemical and Solid-State Letters, 2004, 7 (5), A93-A96.
    [5] T. D. Hatchard and J. R. Dahn, “In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon”, Journal of The Electrochemical Society, 2004, 151 (6), A838-A842.
    [6] Hunjoon Jung, Min Park, Yeo-Geon Yoon, Gi-Bum Kim, and Seung-Ki Joo, “Amorphous silicon anode for lithium-ion rechargeable batteries”, Journal of Power Sources, 2003, 115, 346–351.
    [7] L. Y. Beaulieu, T. D. Hatchard, A. Bonakdarpour, M. D. Fleischauer and J. R. Dahn, “Reaction of Li with Alloy Thin Films Studied by In Situ AFM”, Journal of The Electrochemical Society, 2003, 150 (11), A1457-A1464.
    [8] C. S. Wang, G. T. Wu, X. B. Zhang, Z. F. Qi and W. Z. Li, “Lithium Insertion in Carbon‐Silicon Composite Materials Produced by Mechanical Milling”, J. Electrochem. Soc., 1998, 145, 2751–2758.
    [9] Mino Green, Elizabeth Fielder, Bruno Scrosati, Mario Wachtler and Judith Serra Moreno, “Structured Silicon Anodes for Lithium Battery Applications”, Electrochemical and Solid-State Letters, 2003, 6 (5), A75-A79.
    [10] S. Ohara, J. Suzuki, K. Sekine and T. Takamura, “A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life”, J. Power Sources, 2004, 136, 303–306.
    [11] Ji Heon Ryu, Jae Woo Kim, Yung-Eun Sung, and Seung M. Oh, “Failure modes of silicon powder negative electrode in lithium secondary batteries”, Electrochemical and Solid-State Letters, 2004, 7 (10), A306-A309.
    [12] Zonghai Chen, L. Christensen, and J.R. Dahn, “Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers” Electrochemistry Communications, 2003, 5, 919–923.
    [13] Wei-Ren Liu, Mo-Hua Yang, Hung-Chun Wu, S. M. Chiao and Nae-Lih Wu, “Enhanced Cycle Life of Si Anode for Li-Ion Batteries by Using Modified Elastomeric Binder”, Electrochemical and Solid-State Letters, 2005, 8 (2), A100-A103.
    [14] Jing Li, R. B. Lewis, and J. R. Dahn, “Sodium Carboxymethyl Cellulose - A Potential Binder for Si Negative Electrodes for Li-Ion Batteries”, Electrochemical and Solid-State Letters, 2007, 10 (2) A17-A20.
    [15] S. D. Beattie, D. Larcher, M. Morcrette, B. Simon, and J.-M. Tarascona, “Si Electrodes for Li-Ion Batteries—A New Way to Look at an Old Problem”, Journal of The Electrochemical Society, 2008, 155 (2) A158-A163.
    [16] J.-S. Bridel, T. Azaı¨s, M. Morcrette, J.-M. Tarascon, and D. Larcher, “Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries”, Chem. Mater., 2010, 22 (3), 1229–1241.
    [17] Alexandre Magasinski, Bogdan Zdyrko, Igor Kovalenko, Benjamin Hertzberg, Ruslan Burtovyy, Christopher F. Huebner, Thomas F. Fuller, Igor Luzinov, and Gleb Yushin, “Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid”, ACS Appl. Mater. Interfaces, 2010, 2 (11), 3004–3010.
    [18] S. Komaba, K. Okushi, T. Ozeki, H. Yui, Y. Katayama, T. Miura, T. Saito, and H. Groulte, “Polyacrylate Modifier for Graphite Anode of Lithium-Ion Batteries”, Electrochemical and Solid-State Letters, 2009, 12 (5), A107-A110.
    [19] Shinichi Komaba, Keiji Shimomura, Naoaki Yabuuchi, Tomoaki Ozeki, Hiroharu Yui, and Kohzo Konno, “Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries”, J. Phys. Chem. C, 2011, 115, 13487–13495.
    [20] Shinichi Komaba, Naoaki Yabuuchi, Tomoaki Ozeki, Zhen-Ji Han, Keiji Shimomura, Hiroharu Yui, Yasushi Katayama, and Takashi Miura, “Comparative Study of Sodium Polyacrylate and Poly(vinylidene fluoride) as Binders for High Capacity Si-Graphite Composite Negative Electrodes in Li-Ion Batteries”, J. Phys. Chem. C, 2012, 116, 1380–1389.
    [21] Zhen-Ji Han, Naoaki Yabuuchi, Keiji Shimomura, Masahiro Murase, Hiroharu Yuib and Shinichi Komaba, “High-capacity Si–graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries”, Energy Environ. Sci., 2012, 5, 9014–9020.
    [22] Igor Kovalenko, Bogdan Zdyrko, Alexandre Magasinski, Benjamin Hertzberg, Zoran Milicev, Ruslan Burtovyy, Igor Luzinov, Gleb Yushin, “A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries”, Science, 2011, 334, 75-79.
    [23] E. Peled, “The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model”, E. J. Electrochem. Soc., 1979, 126 (12), 2047-2051.
    [24] E. Peled, D. Golodnitsky, G. Ardel and V. Eshkenazy, “The sei model—application to lithium-polymer electrolyte batteries”, Electrochimica Acta, 1995, 40 (13), 2197–2204.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE