研究生: |
蔡燿宇 Tsai, Yao-Yu |
---|---|
論文名稱: |
探討不同黏著劑應用在鋰電池矽基陽極之比較 Comparative studies of the effect of different binders used in silicon-based anodes for lithium-ion batteries |
指導教授: |
蔡哲正
Tsai, Cho-Jen |
口試委員: |
林居南
俎永熙 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 鋰電池 、矽基陽極 、黏著劑 |
外文關鍵詞: | lithium-ion battery, silicon-based anode, binder |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
矽因擁有最大的理論電容量而被看好可以取代石墨成為新一代鋰離子電池的陽極材料。然而,充放電過程中大量的體積變化是造成電池衰退的主因。近幾年來,黏著劑在矽基陽極上所扮演的角色開始受到重視。本研究選取了幾種目前用在矽基陽極上電性表現較好的黏著劑,以相同的條件做電性測試,並以其他性質測試做輔助,目的是找出最適合矽基陽極的黏著劑。
Silicon, having the highest theoretical energy capacity, is an attractive anode material for next-generation lithium-ion batteries. However, because of huge volume changes during battery operation, silicon-based anode has yet to be commercialized. In the past decade, binder, an electrochemically inactive material, has been noticed to play an important role in battery performance. Many researchers were making a lot of effort in searching for new binders, but these binders were being tested under different conditions by different groups. This study aimed to make a comparison between different types of binders, trying to find out the most suitable binder for silicon-based anodes.
[1] Uday Kasavajjula, Chunsheng Wang, and A. John Appleby, “Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells”, Journal of Power Sources, 2007, 163, 1003–1039.
[2] Jeannine R. Szczech and Song Jin, “Nanostructured silicon for high capacity lithium battery anodes”, Energy Environ. Sci., 2011, 4, 56-72.
[3] Lockwood, David J (Eds.), Nanostructure Science and Technology, Springer, 2013, 87.
[4] M. N. Obrovacz and Leif Christensen, “Structural Changes in Silicon Anodes during Lithium Insertion/Extraction”, Electrochemical and Solid-State Letters, 2004, 7 (5), A93-A96.
[5] T. D. Hatchard and J. R. Dahn, “In Situ XRD and Electrochemical Study of the Reaction of Lithium with Amorphous Silicon”, Journal of The Electrochemical Society, 2004, 151 (6), A838-A842.
[6] Hunjoon Jung, Min Park, Yeo-Geon Yoon, Gi-Bum Kim, and Seung-Ki Joo, “Amorphous silicon anode for lithium-ion rechargeable batteries”, Journal of Power Sources, 2003, 115, 346–351.
[7] L. Y. Beaulieu, T. D. Hatchard, A. Bonakdarpour, M. D. Fleischauer and J. R. Dahn, “Reaction of Li with Alloy Thin Films Studied by In Situ AFM”, Journal of The Electrochemical Society, 2003, 150 (11), A1457-A1464.
[8] C. S. Wang, G. T. Wu, X. B. Zhang, Z. F. Qi and W. Z. Li, “Lithium Insertion in Carbon‐Silicon Composite Materials Produced by Mechanical Milling”, J. Electrochem. Soc., 1998, 145, 2751–2758.
[9] Mino Green, Elizabeth Fielder, Bruno Scrosati, Mario Wachtler and Judith Serra Moreno, “Structured Silicon Anodes for Lithium Battery Applications”, Electrochemical and Solid-State Letters, 2003, 6 (5), A75-A79.
[10] S. Ohara, J. Suzuki, K. Sekine and T. Takamura, “A thin film silicon anode for Li-ion batteries having a very large specific capacity and long cycle life”, J. Power Sources, 2004, 136, 303–306.
[11] Ji Heon Ryu, Jae Woo Kim, Yung-Eun Sung, and Seung M. Oh, “Failure modes of silicon powder negative electrode in lithium secondary batteries”, Electrochemical and Solid-State Letters, 2004, 7 (10), A306-A309.
[12] Zonghai Chen, L. Christensen, and J.R. Dahn, “Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers” Electrochemistry Communications, 2003, 5, 919–923.
[13] Wei-Ren Liu, Mo-Hua Yang, Hung-Chun Wu, S. M. Chiao and Nae-Lih Wu, “Enhanced Cycle Life of Si Anode for Li-Ion Batteries by Using Modified Elastomeric Binder”, Electrochemical and Solid-State Letters, 2005, 8 (2), A100-A103.
[14] Jing Li, R. B. Lewis, and J. R. Dahn, “Sodium Carboxymethyl Cellulose - A Potential Binder for Si Negative Electrodes for Li-Ion Batteries”, Electrochemical and Solid-State Letters, 2007, 10 (2) A17-A20.
[15] S. D. Beattie, D. Larcher, M. Morcrette, B. Simon, and J.-M. Tarascona, “Si Electrodes for Li-Ion Batteries—A New Way to Look at an Old Problem”, Journal of The Electrochemical Society, 2008, 155 (2) A158-A163.
[16] J.-S. Bridel, T. Azaı¨s, M. Morcrette, J.-M. Tarascon, and D. Larcher, “Key Parameters Governing the Reversibility of Si/Carbon/CMC Electrodes for Li-Ion Batteries”, Chem. Mater., 2010, 22 (3), 1229–1241.
[17] Alexandre Magasinski, Bogdan Zdyrko, Igor Kovalenko, Benjamin Hertzberg, Ruslan Burtovyy, Christopher F. Huebner, Thomas F. Fuller, Igor Luzinov, and Gleb Yushin, “Toward Efficient Binders for Li-Ion Battery Si-Based Anodes: Polyacrylic Acid”, ACS Appl. Mater. Interfaces, 2010, 2 (11), 3004–3010.
[18] S. Komaba, K. Okushi, T. Ozeki, H. Yui, Y. Katayama, T. Miura, T. Saito, and H. Groulte, “Polyacrylate Modifier for Graphite Anode of Lithium-Ion Batteries”, Electrochemical and Solid-State Letters, 2009, 12 (5), A107-A110.
[19] Shinichi Komaba, Keiji Shimomura, Naoaki Yabuuchi, Tomoaki Ozeki, Hiroharu Yui, and Kohzo Konno, “Study on Polymer Binders for High-Capacity SiO Negative Electrode of Li-Ion Batteries”, J. Phys. Chem. C, 2011, 115, 13487–13495.
[20] Shinichi Komaba, Naoaki Yabuuchi, Tomoaki Ozeki, Zhen-Ji Han, Keiji Shimomura, Hiroharu Yui, Yasushi Katayama, and Takashi Miura, “Comparative Study of Sodium Polyacrylate and Poly(vinylidene fluoride) as Binders for High Capacity Si-Graphite Composite Negative Electrodes in Li-Ion Batteries”, J. Phys. Chem. C, 2012, 116, 1380–1389.
[21] Zhen-Ji Han, Naoaki Yabuuchi, Keiji Shimomura, Masahiro Murase, Hiroharu Yuib and Shinichi Komaba, “High-capacity Si–graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries”, Energy Environ. Sci., 2012, 5, 9014–9020.
[22] Igor Kovalenko, Bogdan Zdyrko, Alexandre Magasinski, Benjamin Hertzberg, Zoran Milicev, Ruslan Burtovyy, Igor Luzinov, Gleb Yushin, “A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries”, Science, 2011, 334, 75-79.
[23] E. Peled, “The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems—The Solid Electrolyte Interphase Model”, E. J. Electrochem. Soc., 1979, 126 (12), 2047-2051.
[24] E. Peled, D. Golodnitsky, G. Ardel and V. Eshkenazy, “The sei model—application to lithium-polymer electrolyte batteries”, Electrochimica Acta, 1995, 40 (13), 2197–2204.