研究生: |
李宗晏 Lee, Tsung Yen |
---|---|
論文名稱: |
I. 奈米碟中脂質對細菌視紫質光迴圈動力學之調制 II. 截斷格點法對於量子波包動力學之應用 I. Tuning the photocycle kinetics of bacteriorhodopsin in lipid nanodiscs II. Applications of the truncated grid method to quantum wave packet dynamics |
指導教授: |
朱立岡
Chu, Li Kang 周佳駿 Chou, Chia Chun |
口試委員: |
余慈顏
Yu, Tsyr Yan 陳益佳 Chen, I Chia |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 細菌視紫質 、奈米碟 、光迴圈 、動力學 、量子波包 |
外文關鍵詞: | bacteriorhodopsin, nanodisc, photocycle, dynamics, quantum wave packet |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
第一部分
脂質奈米碟( lipid nanodisc )提供細菌視紫質( bacteriorhodopsin, bR )極佳的水相分散性、近似原生態的脂雙層( lipid bilayer )環境並能維持其光誘發質子幫浦能力。為研究細菌視紫質在不同脂質電性環境中的光迴圈動力學反應,吾人將單體細菌視紫質包裹入脂質奈米碟中,並建構以相異比例的陰電性( DMPG、DOPG )及雙性( DMPC、DOPC )脂質混合之脂雙層環境。所得樣品依據陰離子交換層析法與界面電位分析儀,證實奈米碟表面陰電性質確實隨脂質親水端PG比例提升而增強。而穩態可見光吸收光譜結果顯示,奈米碟細菌視紫質α譜帶並未有顯著改變,表示脂質電性並未使視蛋白三級結構發生嚴重變化。以可見光瞬態吸收光譜法偵測光迴圈中間態M、N、O與基態的動力學,顯示隨兩性脂質的比率增加而顯著減緩,尤其以M態之消逝速率變化最為明顯,並伴隨N、O態的瞬態布居分布大幅降低。而脂質的相轉變溫度、流動性及碳鏈長度亦有可能造成光迴圈動力學的差異。本論文中,吾人證實調整奈米碟中的脂質種類及電性,對於光合作用跨膜蛋白的質子幫浦影響甚大。
第二部分
時相關量子波包( time-dependent quantum wavepacket )能提供理論證據以解釋量子現象與化學動力學,而含時薛丁格方程式為主導波包傳播行為的波動方程式。利用有限差分法得變換含時薛丁格方程式中的微分項,建立以純數值運算波包隨時間發展的演算法,並應用吾人所設計之截斷格點法改良其演算模組,以減輕波函數中趨近零值之數據所造成的運算負擔。多種位能系統的演算試例中,顯示演算法在應用截斷格點法後有能力表現波包的擴展、位移與振盪行為,並且其運算精確度與原始演算法相當。此外,在虛數時間法的試例中,截斷格點法得獲取與解析解相符的基態波函數及其能量期望值,並顯示演算穩定度有所提升。吾人設計的截斷格點法能在保有運算準確度的前提下,得縮減運算負擔,並提供了比原始演算法更高的穩定度。
I. Monodisperse lipid nanodisc provides bacteriorhodopsin (bR), a light-driven proton pump membrane protein, excellent aqueous dispersibility and native-mimic lipid bilayer environment. To study the lipid-composition dependence of the photo-cycle kinetics of bR, the monomeric bR was embedded in nanodiscs composed of different ratios of negatively-charged lipids (DMPG, DOPG) to zwitterionic lipids (DMPC, DOPC). The steady-state absorption spectra of light-adapted monomeric bR in nanodiscs composed of different lipid ratios exhibited the conservation of the tertiary structure of embedded bR and the ion-exchange chromatography showed increment on negative surface charge as the content of DOPG or DMPG increased. By utilizing transient absorption spectroscopy to monitor the evolution of photocycle intermediates of bR in nanodisc, the photocycle kinetics of bR was significantly retarded and the transient populations of intermediates N and O were decreased as the content of DMPG or DOPG was reduced. In this work, we not only demonstrated the usefulness of nanodiscs as a membrane mimicking system, but also showed that the surrounding lipids play a crucial role in altering the biological functions, e.g., the ion translocation kinetics of the transmembrane proteins.
II. Time-dependent quantum wave packet obtained by solving the time-dependent Schrödinger equation (TDSE) provides theoretical information for quantum phenomena of physical systems. In conventional computational methods, the finite difference method is employed to obtain approximate solutions to the TDSE. In order to improve the numerical algorithm for the TDSE, we develop the truncated grid method to reduce the computational effort by eliminating grid points with extremely low probability densities. By applying the new method to several quantum systems, including the free Guassian wave packet and the coherent state of the harmonic oscillator, the propagation behavior of wavepacket were demonstrated. In addition, we employ the truncated grid method to solve the imaginary-time Schrödinger equation for the ground and first-excited states of the harmonic oscillator, the double well potential, and the Morse potential. Excellent computational results for these examples show that the truncated grid method significantly reduces the computational effort relative to the full-grid integration for the TDSE.
第一篇
(1) Stoeckenius, W.; Rowen, R. J. Cell Biol. 1967, 34, 365-393.
(2) Stoeckenius, W.; Kunau, W. H. J. Cell Biol. 1968, 38, 337-357.
(3) Oesterhelt, D.; Stoeckenius. W. Nat. New Biol. 1971, 233, 149-152.
(4) Blaurock, A. E.; Stoeckenius.W. Nat. New Biol. 1971, 233, 152-155.
(5) Oesterhelt, D.; Stoeckenius, W. Proc. Natl. Acad. Sci. U.S.A. 1973, 70, 2853-2857.
(6) Stoeckenius, W.; Lozier, R. H. J. Supramol. Struct. 1974, 2, 769-774.
(7) Lozier, R. H.; Bogomolni, R. A.; Stoeckenius, W. Biophys. J. 1975, 15, 955-962.
(8) Oesterhelt, D.; Meentzen, M.; Schuhmann, L. Eur. J. Biochem. 1973, 40, 453-463.
(9) Lewis, A.; Spoonhower, J.; Bogomolni, R. A.; Lozier, R. H.; Stoeckenius, W. Proc. Natl. Acad. Sci. U.S.A. 1974, 71, 4462-4466.
(10) Rothschild, K. J.; Zagaeski, M.; Cantore, W. A. Biochem. Biophys. Res. Commun. 1981, 103, 483-489.
(11) Gerwert, K.; Souvignier, G.; Hess, B. Proc. Natl. Acad. Sci. U.S.A. 1990, 87, 9774-9778.
(12) Richter, H.-T.; Needleman, R.; Kandori, H.; Maeda, A.; Lanyi, J. K. Biochemistry 1996, 35, 15461-15466.
(13) Rothschild, K. J. J. Bioenerg. Biomembr. 1992, 24, 147-167.
(14) Sharkov, A. V.; Pakulev, A. V.; Chekalin, S. V.; Matveetz, Y. A. Biochim. Biophys. Acta, Bioenerg. 1985, 808, 94-102.
(15) Váró, G.; Lanyi, J. K. Biochemistry 1991, 30, 5008-5015.
(16) Terner, J.; El-Sayed, M. A. Acc. Chem. Res. 1985, 18, 331-338.
(17) Neutze, R.; Pebay-Peyroula, E.; Edman, K.; Royant, A.; Navarro, J.; Landau, E. M. Biochim. Biophys. Acta, Biomembr. 2002, 1565, 144-167.
(18) Lanyi, J. K. Annu. Rev. Physiol. 2004, 66, 665-691.
(19) Lanyi, J. K. Biochim. Biophys. Acta, Bioenerg. 2006, 1757, 1012-1018.
(20) Henderson, R.; Unwin, P. N. T. Nature 1975, 257, 28-32.
(21) Ovchinnikov, Y. A.; Abdulaev, N. G.; Feigina, M. Y.; Kiselev, A. V.; Lobanov, N. A. FEBS Lett. 1979, 100, 219-224.
(22) Lemke, H. D.; Oesterhelt, D. FEBS Lett. 1981, 128, 255-260.
(23) Henderson, R.; Baldwin, J. M.; Ceska, T. A.; Zemlin, F.; Beckmann, E.; Downing, K. H. J. Mol. Biol. 1990, 213, 899-929.
(24) Luecke, H.; Schobert, B.; Richter, H.-T.; Cartailler, J.-P.; Lanyi, J. K. J. Mol. Biol. 1999, 291, 899-911.
(25) Luecke, H.; Schobert, B.; Richter, H.-T.; Cartailler, J.-P.; Lanyi, J. K. Science 1999, 286, 255-260.
(26) MacDonald, R. E.; Lanyi, J. K. Biochemistry 1975, 14, 2882-2889.
(27) Kayushin, L. P.; Skulachev, V. P. FEBS Lett. 1974, 39, 39-42.
(28) Eisenbach, M.; Weissmann, C.; Tanny, G.; Caplan, S. R. FEBS Lett. 1977, 81, 77-80.
(29) Lozier, R. H.; Niederberger, W.; Bogomolni, R. A.; Hwang, S.; Stoeckenius, W. Biochim Biophys Acta 1976, 440, 545-556.
(30) Huang, K. S.; Bayley, H.; Khorana, H. G. Proc. Natl. Acad. Sci. U.S.A. 1980, 77, 323-327.
(31) Heyes, C. D.; El-Sayed, M. A. J. Biol. Chem. 2002, 277, 29437-29443.
(32) Brouillette, C. G.; McMichens, R. B.; Stern, L. J.; Khorana, H. G. Proteins: Struct., Funct., Bioinf. 1989, 5, 38-46.
(33) Baribeau, J.; Boucher, F. Biochim. Biophys. Acta, Bioenerg. 1987, 890, 275-278.
(34) Pomerleau, V.; Harvey-Girard, E.; Boucher, F. Biochim. Biophys. Acta, Biomembr. 1995, 1234, 221-224.
(35) Dracheva, S.; Bose, S.; Hendler, R. W. FEBS Lett. 1996, 382, 209-212.
(36) Reyenolds, J. A.; Stoeckenius, W. Proc. Natl. Acad. Sci. U.S.A. 1977, 74, 2803-2804.
(37) Wang, J. P.; Link, S.; Heyes, C. D.; El-Sayed, M. A. Biophys. J. 2002, 83, 1557-1566.
(38) Paternostre, M. T.; Roux, M.; Rigaud, J. L. Biochemistry 1988, 27, 2668-2677.
(39) Wang, Z.; Bai, J.; Xu, Y. Biochem. Biophys. Res. Commun. 2008, 371, 814-817.
(40) Bayburt, T. H.; Sligar, S. G. Protein Sci. 2003, 12, 2476-2481.
(41) Barnett, S. M.; Dracheva, S.; Hendler, R. W.; Levin, I. W. Biochemistry 1996, 35, 4558-4567.
(42) Cartailler, J.-P.; Luecke, H. Annu. Rev. Biophys. Biomol. Struct. 2003, 32, 285-310.
(43) Heberle, J.; Riesle, J.; Thiedemann, G.; Oesterhelt, D.; Dencher, N. A. Nature 1994, 370, 379-382.
(44) Heyes, C. D.; El-Sayed, M. A. Biophys. J. 2003, 85, 426-434.
(45) Bayburt, T. H.; Grinkova, Y. V.; Sligar, S. G. Arch. Biochem. Biophys. 2006, 450, 215-222.
(46) Gai, F.; C., H. K.; Cooper, M. J.; Anfinrud, P., A. Science 1998, 279, 1886-1891.
(47) Baudry, J.; Tajkhorshid, E.; Molnar, F.; Phillips, J.; Schulten, K. J. Phys. Chem. B 2001, 105, 905-918.
(48) Lanyi, J. K. "Understanding Structure and Function in the Light-Driven Proton Pump Bacteriorhodopsin". 124, 1998, p. 164-178.
(49) Morgan, J. E.; Vakkasoglu, A. S.; Lanyi, J. K.; Gennis, R. B.; Maeda, A. Biochemistry 2010, 49, 3273-3281.
(50) Lanyi, J. K. "Biophysical and Structural Aspects of Bioenergetics", Wikstrom, M., 2005, 227-248.
(51) Becher, B.; Tokunaga, F.; Ebrey, T. G. Biochemistry 1978, 17, 2293-2300.
(52) Kalisky, O.; Feitelson, J.; Ottolenghi, M. Biochemistry 1981, 20, 205-209.
(53) Rehorek, M.; Heyn, M. P. Biochemistry 1979, 18, 4977-4983.
(54) Birge, R. R.; Schulten, K.; Karplus, M. Chem. Phys. Lett. 1975, 31, 451-454.
(55) Bennett, J. A.; Birge, R. R. J. Chem. Phys. 1980, 73, 4234-4246.
(56) Mowery, P. C.; Lozier, R. H.; Chae, Q.; Tseng, Y.-W.; Taylor, M.; Stoeckenius, W. Biochemistry 1979, 18, 4100-4107.
(57) Scherrer, P.; Mathew, M. K.; Sperling, W.; Stoeckenius, W. Biochemistry 1989, 28, 829-834.
(58) Milder, S. J.; Thorgeirsson, T. E.; Miercke, L. J. W.; Stroud, R. M.; Kliger, D. S. Biochemistry 1991, 30, 1751-1761.
(59) Casadio, R.; Gutowitz, H.; Mowery, P.; Taylor, M.; Stoeckenius, W. Biochim. Biophys. Acta, Bioenerg. 1980, 590, 13-23.
(60) Heyn, M. P.; Bauer, P. J.; Dencher, N. A. Biochem. Biophys. Res. Commun. 1975, 67, 897-903.
(61) Bauer, P. J.; Dencher, N. A.; Heyn, M. P. Biophys. Struct. Mechanism 1976, 2, 79-92.
(62) Dencher, N. A.; Heyn, M. P. FEBS Lett. 1978, 96, 322-326.
(63) Cassim, J. Y. Biophys. J. 1992, 63, 1432-1442.
(64) Pescitelli, G.; Woody, R. W. J. Phys. Chem. B 2012, 116, 6751-6763.
(65) Smith, S. O.; Pardoen, J. A.; Mulder, P. P. J.; Curry, B.; Lugtenburg, J.; Mathies, R. Biochemistry 1983, 22, 6141-6148.
(66) Lanyi, J. K. Mol. Membr. Biol. 2004, 21, 143-150.
(67) Birge, R. R.; Gillespie, N. B.; Izaguirre, E. W.; Kusnetzow, A.; Lawrence, A. F.; Singh, D.; Song, Q. W.; Schmidt, E.; Stuart, J. A.; Seetharaman, S.; Wise, K. J. J. Phys. Chem. B 1999, 103, 10746-10766.
(68) Lanyi, J. K. J. Phys. Chem. B 2000, 104, 11441-11448.
(69) Hendler, R. W.; Dracheva, S. Biochemistry 2001, 66, 1311-1314.
(70) Mukhopadhyay, A. K.; Dracheva, S.; Bose, S.; Hendler, R. W. Biochemistry 1996, 35, 9245-9252.
(71) Mukhopadhay, A. K.; Bose, S.; Hendler, R. W. Biochemistry 1994, 33, 10889-10895.
(72) Joshi, M. K.; Dracheva, S.; Mukhopadhyay, A. K.; Bose, S.; Hendler, R. W. Biochemistry 1998, 37, 14463-14470.
(73) Scherrer, P.; Alexiev, U.; Marti, T.; Khorana, H. G.; Heyn, M. P. Biochemistry 1994, 33, 13684-13692.
(74) Heberle, J. Biochim. Biophys. Acta, Bioenerg. 2000, 1458, 135-147.
(75) Bayburt, T. H.; Grinkova, Y. V.; Sligar, S. G. Nano Letters 2002, 2, 853-856.
(76) Nath, A.; Atkins, W. M.; Sligar, S. G. Biochemistry 2007, 46, 2059-2069.
(77) Denisov, I. G.; Grinkova, Y. V.; Lazarides, A. A.; Sligar, S. G. J. Am. Chem. Soc. 2004, 126, 3477-3487.
(78) Dioumaev, A. K.; Lanyi, J. K. Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 9621-9626.
(79) Yu, T.-Y.; Raschle, T.; Hiller, S.; Wagner, G. Biochim. Biophys. Acta, Biomembr. 2012, 1818, 1562-1569.
(80) Hagn, F.; Etzkorn, M.; Raschle, T.; Wagner, G. J. Am. Chem. Soc. 2013, 135, 1919-1925.
(81) Johnson, P. J. M.; Halpin, A.; Morizumi, T.; Brown, L. S.; Prokhorenko, V. I.; Ernst, O. P.; Dwayne Miller, R. J. Phys. Chem. Chem. Phys. 2014, 16, 21310-21320.
(82) Lee, T.-Y.; Yeh, V.; Chuang, J.; Chung Chan, Jerry C.; Chu, L.-K.; Yu, T.-Y. Biophys. J. 2015, 109, 1899-1906.
(83) Wadsater, M.; Maric, S.; Simonsen, J. B.; Mortensen, K.; Cardenas, M. Soft Matter 2013, 9, 2329-2337.
(84) Pain, R. Current Protocols in Protein Science 2004, 7.6.1-7.6.24.
(85) Whitmore, L.; Wallace, B. A. Biopolymers 2008, 89, 392-400.
(86) Wilson, K. "Principles and Techniques of Biochemistry and Molecular Biology", Wilson, K.; Walker, J., 2010, 433-476.
(87) Hunter, R. J. "Zeta Potential in Colloid Science", Ottewill, R. H.; Rowell, R. L., 1981, 11-58.
(88) Henry, D. C. Proc. R. Soc. A 1931, 133, 106-129.
(89) Oesterhelt, D.; Stoeckenius, W. Methods Enzymol 1974, 31, 667-678.
(90) Avanti polar lipids-DMPC
http://avantilipids.com/product/850345/.
(91) Avanti polar lipids-DMPG
http://avantilipids.com/product/840445/.
(92) Avanti polar lipids-DOPC
https://avantilipids.com/product/860345/.
(93) Avanti polar lipids-DOPG
https://avantilipids.com/product/840475/.
(94) USB Optical Bench Options
http://oceanoptics.com/product-details/usb4000-optical-bench-options/.
(95) Hoffmann, M.; Wanko, M.; Strodel, P.; König, P. H.; Frauenheim, T.; Schulten, K.; Thiel, W.; Tajkhorshid, E.; Elstner, M. J. Am. Chem. Soc. 2006, 128, 10808-10818.
(96) Sperling, W.; Carl, P.; Rafferty, C. N.; Dencher, N. A. Biophys. Struct. Mechanism 1977, 3, 79-94.
(97) Heyes, C. D.; El-Sayed, M. A. Biophys. J. 2003, 85, 426-434.
(98) Váró, Gyorgy; Lanyi, J. K. Biochemistry 1991, 30, 7165-7171.
(99) Czéagéa, J.; Reinisch, L. O. U. Photochem. Photobiol. 1991, 53, 659-666.
(100) Dancsházy, Z.; Tokaji, Z.; Dér, A. FEBS Lett. 1999, 450, 154-157.
(101) Yokoyama, Y.; Negishi, L.; Kitoh, T.; Sonoyama, M.; Asami, Y.; Mitaku, S. J. Phys. Chem. B 2010, 114, 15706-15711.
第二篇
(1) Bohm, D. Phys. Rev. 1952, 85, 166-179.
(2) Bohm, D. Phys. Rev. 1952, 85, 180-193.
(3) Wyatt, R. E.; Trahan, C. J. "Quantum dynamics with trajectories : introduction to quantum hydrodynamics". 2005.
(4) Trahan, C. J.; Hughes, K.; Wyatt, R. E. J. Chem. Phys. 2003, 118, 9911-9914.
(5) Lopreore, C. L.; Wyatt, R. E. Phys. Rev. Lett. 1999, 82, 5190-5193.
(6) Wyatt, R. E. Chem. Phys. Lett. 1999, 313, 189-197.
(7) Tannor, D. J. "Introduction to quantum mechanics : a time-dependent perspective". 2007.
(8) Blinder, S. M. Am. J. Phys. 1968, 36, 525-526.
(9) Kosloff, R.; Talezer, H. Chem. Phys. Lett. 1986, 127, 223-230.
(10) Chou, C.-C.; Kouri, D. J. J. Phys. Chem. A 2013, 117, 3449-3457.
(11) Grigorenko, I.; Garcia, M. E. Phys. A 2000, 284, 131-139.
(12) Pettey, L. R.; Wyatt, R. E. Chem. Phys. Lett. 2006, 424, 443-448.
(13) Roy, A. K.; Gupta, N.; Deb, B. M. Phys. Rev. A 2001, 65, 012109.
(14) Chou, C.-C.; Wyatt, R. E. J. Chem. Phys. 2006, 125, 174103.
(15) Singh, A. K.; Bhadauria, B. S. Int. J. Math. Anal. 2009, 3, 815-827.