簡易檢索 / 詳目顯示

研究生: 楊智凱
Yang, Zhi-Kai
論文名稱: 分子束磊晶成長立方晶結構氧化鉿薄膜之結構研究
Structural Study of Cubic Phase HfO2 Epitaxial Thin Films Grown by MBE
指導教授: 洪銘輝
Hong, Ming-Hwei
郭瑞年
Kwo, Ray-Nien
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 133
中文關鍵詞: 分子束磊晶氧化鉿氧化釔高介電常數同步輻射砷化鎵
外文關鍵詞: Molecular beam epitaxy, HfO2, Y2O3, High-κ Dielectrics, Synchrotron Radiation, GaAs
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • SiO2/Si的半導體電晶體元件隨著尺寸的微小化,已經漸逼進其量子穿隧之極限。氧化鉿具備高介電系數的性質使其成為極具潛力取代SiO2的材料之ㄧ, 人們熟知的氧化鉿結構有:單斜晶、立方晶以及正方晶結構等;藉由第一原理的理論計算,可得到其各自的介電係數約為:20、30與70。通常於實驗室中以濺鍍法、原子層沉積技術(Atomic Layer Deposition,ALD)以及分子束磊晶成長(MBE)等方法成長氧化鉿之薄膜結構皆為單斜晶結構。其中,以分子束磊晶成長之方法成長氧化鉿磊晶薄膜,其結構為單斜晶構並具有四種晶域(domain)以及輪廓鮮明無中間層的介面。
    本論文之主要工作為以多腔體分子束磊晶成長氧化鉿摻雜氧化釔之磊晶薄膜於多種半導體基材上諸如砷化鎵(100)以及矽(111)。此氧化物薄膜就有極佳的磊晶型態以及介面特性。摻雜氧化釔的方式改變了氧化鉿的晶體結構,使其自單斜晶結構變化成立方晶結構;且經由電性量測之結果,其介電係數上升至30。本論文利用國家同步輻射中心的BL17B1 wiggler等光束線對此新穎的氧化物磊晶薄膜系統做了很詳盡的結構分析。


    HfO2, due to its high □ value, is the leading candidate as a gate dielectric for SiO2 in the Si technology, which with the rapid shrinkage of its transistor feature size has forced the SiO2 gate oxide thickness to reduce to 1.0nm, the quantum tunneling limit. There are three known structures of HfO2: monoclinic, cubic, and tetragonal with the dielectric constants being ~20, ~30, and ~70, respectively, as obtained from the first-principles calculation. The common structure of HfO2 thin films from sputtering, atomic layer deposition, and MBE is monoclinic phase. Moreover, the MBE oxide films are epitaxially grown on GaAs with four domains and atomically sharp interface without any interfacial layer.
    In this work, HfO2 doped with Y2O3 have been grown on various semiconductors substrates, such as GaAs (100) and Si (111) etc., in a multi-chamber MBE system with electron beam evaporation from two separate charges of HfO2 and Y2O3. The oxide films were found to grow epitaxially on the semiconductors, again with very sharp interfaces. Furthermore, the structure of the oxide films was found to change from the monoclinic phase with a low dielectric constant to the cubic phase with a dielectric constant above 30. The structure transformation of HfO2 by doping yttrium increases the dielectric constant of it. The structural characteristics of these thin oxide films were studied using high-resolution x-ray diffraction conducted at BL17B1 wiggler beamline in Taiwan’s National Synchrotron Radiation Research Center.

    TABLE CONTENTS Chinese abstract English abstract Acknowledgement Table of Contents Table captions Figure captions Chapter 1 Introduction 1.1 Background 1.2 High-κ dielectrics 1.3 Objectives of the Project Chapter 2 Theory and Instrumentation 2.1 X rays and their interaction with matter 2.1.1 Synchrotron radiation 2.1.2 X-ray diffraction 2.1.3 Extended X-ray Absorption Fine-Structure (EXAFS) 2.1.4 Resonant scattering 2.2 Multi-Chambers MBE Systems 2.2.1 MBE system 2.2.2 X-ray Photoelectron Spectroscopy (XPS) 2.3 Fundamentals of the metal-oxide –semiconductor (MOS) 2.3.1 Characteristic of MOS diode structure. 2.3.2 Charges in the film 2.4 Other Instrumentation 2.4.1 Transmission electron microscope (TEM) 2.4.2 X-ray photoelectron spectroscopy (XPS) Chapter 3 Experimental Procedure 3.1 Oxide deposition 3.2 Structural measurement process 3.3 Electrical measurement process Chapter 4 Results and discussion 4.1 Structural analysis 4.1.1 HfO2 on GaAs(001) [sample A-1 and A-2] 4.1.2 YDH on GaAs(001) [sample B-1, B-2, and B-3] 4.1.3 YDH on Si(111) [sample C] 4.1.4 YDH on GaN(0 0 0 1)/Sapphire Al2O3(0 0 0 1) [sample D] 4.2 Chemical analysis 4.2.1 Doping concentration measurement 4.2.2 Anomalous x-ray scattering (AXS) 4.3 Electrical properties 3-1 Chapter 5 Conclusions and Further Works 3-1 Chapter 6 References

    References
    Chapter 1 Reference
    1.Moore G E ,Electronics, Volume 38, Number 8, April 19,
    1965
    2.Look Moore’s law at
    http://www.intel.com/research/silicon/mooreslaw.htm
    3.High-κ Gate Dielectrics, Michel Houssa, IOP publishing
    2004
    4.http://www.itrs.net
    5.D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann,K.
    Evans-Lutterodt, and G. Timp, Nature (London) 399,758
    (1999).
    6.J. Kwo, M. Hong, A. R. Kortan et. al, Appl. Phys. Lett.
    77,130 (2000)
    7.G.D. Willk, R. M. Wallace and J. M. Anthony, J. Appl.
    Phys. 89, 5243(2001)
    8.M. Hong, J. Kwo, A. R. Kortan et. al, Science 283, 1897
    (1999)
    9.X. Zhao and D. Vanderbilt, Phys. Rev. B 65, 233106 (2002)
    10.T. Mimura and M. Fukuta, IEEE Trans. Electron Devices ED-
    27, 1147 (1980), and references therein.
    11.Physics and Chemistry of III-V Compound Semiconductor
    Interfaces, edited C. W. Wilmsen (Plenum, New York,
    1985), and references therein.
    12.C. L. Chen, F. W. Smith, B. J. Clifton, L. J. Mahoney,
    M. J. Manfra, and A. R. Calawa, IEEE Electron Device
    Lett. 12, 306 (1991).
    13.M. Hong, C. T. Liu, H. Reese, and J. Kwo, Encyclopedia
    of Electrical and Electronics Engineering, edited by J.
    G. Webster (Wiley, New York, 1999), Vol. 19, p. 87, and
    references therein.
    14.J. Y. Wu, H. H. Wang, Y. H. Wang, and M. P. Houng, IEEE
    Electron Device Lett. 20, 18 (1999).
    15.P. Chang, et al, unpublished work.
    16.C.-H. Hsu, et al, unpublished work.

    Chapter 2 Reference
    1.Elements of Modern X-Ray Physics,Jen Als-Nielsen ans Des
    McMorrow, WILEY(2001)
    2.http://www.nsrrc.org.tw/
    3.L. G. Parratt, Phys. Rev., vol. 95, 359,(1954)
    4.Oliver H. Seeck, "Neutron and X-Ray Reflectometry",(2004)
    5.Kiessig H., Ann. Phys., 10 (1931) 769
    6.Y. Waseda,"Anomalous X-ray scattering for Materials
    Characterization", Springer (2002)
    7.Milton Ohring,”The Materials Science of Thin Films”,
    Academic Press (1992)
    8.W. Braun, "Applied RHEED," Springer-Verlag (1999).
    9.K. Britze and G. Meyer-Ehmsen, Surf. Sci. 77, 131 (1978).
    10.X. Zeng, B. Lin, I. El-Kholy, and H. Elsayed-Ali, Phys.
    Rev. B 59, 14907 (1999).
    11.THE TECHNOLOGY AND PHYSICS OF MOLECULAR BEAM EPITAXY,
    Chapter 2, E. H. C. Parker
    12.A. Y. Cho, J. Appl. Phys. 41, 2780 (1970)
    13.G. Laurence, F. Simondet, and P. Saget, Appl. Phys. 19,
    63 (1979)
    14.J. H. Neave an dB. A. Joyce, J. Cryst. Growth 43, 204
    (1987)
    15.A. Y. Cho and I. Hayashi, Solid State Electron. 14, 125
    (1971)
    16.L. L. Chang, Proc. 2nd Int. Symp. Molecular Beam Epitaxy
    and Rleated Clean Surface Techniques, Tokyo (1982), p.
    57.
    17.C. A. Chang, R. Ludeke, L. L. Chang, and L. Esaki, Appl.
    Phys. Lett. 31, 759 (1977)
    18.E. H. NICOLLIAN and J. R. BREWS. MOS Physics and
    Technology, Wiley (1982).
    19.YUAN TAUR and TAK H. NING,Fndamentals of Modern VLSI
    Devices, CAMBRIDGE(2002)
    20.B. E. Deal,"Standardized Terminology for Oxide Charge
    Associated with Thermally Oxidized Silicon," IEEE Trans.
    Electron Dev. ED-27, 606-608, March 1980.
    21.D. Shindo. T. Oikawa,"Analytical Electron Microscopy for
    Materials Science," Springer 2002
    22.David B. Williams and C. Barry Carter,"TRANSMISSION
    ELECTRON MICROSCOPY", PLENUM (1996)
    23.D. BRIGGS and M. P. SEAH, "Practical Surface Analysis"-
    2nd ed. John Wiley & Dond, Inc., New York, USA (1990)
    24.http://www.chem.qmul.ac.uk/surfaces/scc/scat5_3.htm

    Chapter 4 Reference
    1. P. Chang, W. C. Lee, Z. K. Yang, Y. J. Lee, M. Hong, J.
    Kwo, and C.-H. Hsu, unpublished results.
    2.M. M. Frank, Glen D. Wilk, D. Starodub, T. Gustafsson, E.
    Garfunkel, Y. J. Chabal, J. Grazul and D. A. Muller,
    Appl. Phys. Lett. 86, 152904 (2005).
    3.G. K. Willian and W. H. Hall, Acta Metall. 1, 22 (1953).
    4.L. Tapfer, M. Ospelt and H. von Kanel, J. Appl.
    Phys.,67,1298 (1990)
    5.G. Simin, A. Tarakji, X. Hu, A. Koudymov, J. Yang, M. A.
    Khan, M. S. Shur, and R. Gaska, Phys. Status Solidi A
    188, 219, (2001).
    6.D. Mistele, T. Rotter, R. Ferretti, F. Fedler, H.
    Klausiag, O. K. Semchinova, J. Stemmer, J. Aderhold, and
    J. Graul, Mater. Res. Soc. Symp. Proc. 639, G11.42.1
    (2001).
    7.F C Frank and J.H. Van der Merwe, Proc. Roy. Sot. A198
    (1948).
    8.M. Volmer and A. Weber, Z. Phys. Chem. 119(1926).
    9.N.Stransk; and L. Krastanor, Ber. Akad. Wiss. Wien 146(
    1938).
    10.V. S. Stubican. Adv. Ceram, 24A [Sci. Technol. Zirconia
    3] 71-82,(1988)
    11.M. Hartmanova, F. Hanic, K. Putyera, D. Tunega, and V.
    B. Glushkova. Materials Chemistry and Physics, 34 (1993)
    175-180
    12.http://ftp.esrf.fr/pub/scisoft/xop/DabaxFiles/
    13.DIETER K. SCHRODER, ‘semiconductor material and device
    characterization’, Wiley
    14.Jun-Yen Tewg, Yue Kuo, and Jiang Lu, Journal of The
    Electrochemical Society, 152 (8),G643-G650 ,(2005)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE