研究生: |
黃祖緯 Huang, Tsu-Wei |
---|---|
論文名稱: |
發展具自我對準之微型環境濕室元件應用於生物軟物質之電子顯微鏡觀測 Development of Self-aligned Micro Wet-cell Device for Environmental Electron Microscopy Investigation of Biology and Soft matter |
指導教授: |
曾繁根
Tseng, Fang-Gang 陳福榮 Chen, Fu-Rong |
口試委員: |
曾繁根
Tseng, Fan-Gang 陳福榮 Chen, Fu-Rong 李定國 Lee, Ting-Kuo 張嘉升 Chang, Chia-Seng 薛富盛 Shieu, Fuh-Sheng 張 立 Chang, Li 莊昀儒 Chuang, Yun-Ju |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 135 |
中文關鍵詞: | 環境穿透式電子顯微鏡 、濕室環境腔體 、微機電 、抗輻射細菌 、奈米氣泡 |
外文關鍵詞: | ETEM, wet-cell, MEMS, D, radiodurans, nanobubble |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究的目的,是解決電子顯微鏡應用在活體生物軟物質遇到的挑戰之一-潮濕樣品中的水份會被真空系統抽乾。利用微機電技術所製作的濕室環境元件,是由結構互補的一底座(Out-Frame)與一上蓋(In-Frame)組成,嵌合密封後可將液體樣品保存於真空中,允許電子束穿透的兩薄膜窗口,使影像的取得仍能進行。經由特殊的設計與二次濕蝕刻技術,使元件具有以下特點:1)可放入一般電子顯微鏡試片載台,2)具自我對準機制,3)特殊圓形窗口使可觀察視野最大化,4)依樣品大小製作不同的薄膜間距。5)適合直接於晶片上進行細胞/細菌等微生物培養。後續章節將描述設計原理與實際製作方法。
本研究第二部分,將應用此微型元件於含液體樣品的觀測中。於穿透式電子顯微鏡、掃描電子顯微鏡與穿透X光顯微鏡中使用此元件,以紀錄奈米金粒於甘油溶液中的動態運動軌跡、觀測抗輻射細菌的分裂與量測微結構厚度、比較癌細胞乾燥與含水狀態的影像,以及誘發並觀測奈米氣泡的發生。
This paper describes a Self-Aligned Wet (SAW) cell suitable for direct-cell or bacteria incubation and observation in a wet environment inside a transmission electron microscope. This SAW cell is fabricated by a bulk-micromachining process and composed of two structurally complementary counterparts (an out-frame and an in-frame), where each contain a silicon nitride film based observation window. The in- and out-frames can be self-aligned via a mechanism of surface tension from a bio-sample droplet without the aid of positioning stages. The liquid chamber is enclosed between two silicon nitride membranes that are thin enough to allow high energy electrons to penetrate while also sustaining the pressure difference between the TEM vacuum and the vapor pressure within the liquid chamber. A large field of view in a SAW cell is favored and formed from a larger sized observation window in the out-frame, which is fabricated using a unique circular membrane formation process.
In this paper, we introduce a novel design to circumvent the challenges of charging/heating problems in silicon nitride that arise from interactions with an electron beam. This paper also demonstrates the TEM observations of particles dynamic, D. Radiodurans growth, fixed cell, and nanobubble nucleation in a liquid environment within a thicker chamber within a SAW cell.
[1] M. Rees, Just six numbers: The deep forces that shape the universe, Basic Books, New York, 1999.
[2] C.O. Girit, J.C. Meyer, R. Erni, M.D. Rossell, C. Kisielowski, L. Yang, et al., Graphene at the edge: stability and dynamics., Science (New York, N.Y.). 323 (2009) 1705–8.
[3] D. Van Dyck, F.-R. Chen, “Big Bang” tomography as a new route to atomic-resolution electron tomography., Nature. 486 (2012) 243–6.
[4] S. Raunser, T. Walz, Electron crystallography as a technique to study the structure on membrane proteins in a lipidic environment., Annual Review of Biophysics. 38 (2009) 89–105.
[5] E.J. Boekema, M. Folea, R. Kouřil, Single particle electron microscopy., Photosynthesis Research. 102 (2009) 189–96.
[6] W. Jiang, M.L. Baker, J. Jakana, P.R. Weigele, J. King, W. Chiu, Backbone structure of the infectious epsilon15 virus capsid revealed by electron cryomicroscopy., Nature. 451 (2008) 1130–4.
[7] D.-H. Chen, M.L. Baker, C.F. Hryc, F. DiMaio, J. Jakana, W. Wu, et al., Structural basis for scaffolding-mediated assembly and maturation of a dsDNA virus., Proceedings of the National Academy of Sciences of the United States of America. 108 (2011) 1355–60.
[8] S.-H. Huang, W.-J. Wang, C.-S. Chang, Y.-K. Hwu, F.-G. Tseng, J.-J. Kai, et al., The fabrication and application of Zernike electrostatic phase plate., Journal of Electron Microscopy. 55 (2006) 273–80.
[9] J. Shiue, C.-S. Chang, S.-H. Huang, C.-H. Hsu, J.-S. Tsai, W.-H. Chang, et al., Phase TEM for biological imaging utilizing a Boersch electrostatic phase plate: theory and practice., Journal of Electron Microscopy. 58 (2009) 137–45.
[10] T.W. Huang, L.T. Lin, K.W. Liu, Y.J. Chuang, C.H. Huang, F.R. Chen, et al., Observation of High Contrast Ferritin Proteins in TEM, in: The Proceedings of the μTAS 2010, Groningen, The Netherlands, 2010: pp. 1166–1168.
[11] R.F. Egerton, P. Li, M. Malac, Radiation damage in the TEM and SEM., Micron (Oxford, England : 1993). 35 (2004) 399–409.
[12] R.F. Egerton, R. McLeod, F. Wang, M. Malac, Basic questions related to electron-induced sputtering in the TEM, Ultramicroscopy. 110 (2010) 991–997.
[13] R.F. Egerton, Control of Radiation Damage in the TEM, Ultramicroscopy. (2012) 1–9.
[14] D.J. Flannigan, B. Barwick, A.H. Zewail, Biological imaging with 4D ultrafast electron microscopy., Proceedings of the National Academy of Sciences of the United States of America. 107 (2010) 9933–7.
[15] J.J. Bozzola, L.D. Russell, Electron Microscopy Principles and Techniques for Biologists, Jones and Bartlett Publishers, 1999.
[16] T. ITO, K. HIZIYA, A Specimen Reaction Device for the Electron Microscope and its Applications , Journal of Electron Microscopy . 6 (1958) 4–8.
[17] H. Hashimoto, T. Naiki, T. Eto, K. Fujiwara, High Temperature Gas Reaction Specimen Chamber for an Electron Microscope, Japanese Journal of Applied Physics. 7 (1968) 946–952.
[18] R.T.K.B.A.P.S. Harris, Controled atmosphere electron microscopy, Journal of Physics E: Scientific Instruments. 8 (1972) 793.
[19] Akira Fukami, S. Murakami, PROGRESS OF ELECTRON MICROSCOPY OF WET SPECIMENS USING FILM-SEALED ENVIRONMENTAL CELL: ITS SERIOUS PROBLEMS FOR BIOLOGICAL MATERIALS, Journal of Electron Microscopy. 28 (1979) 41–48.
[20] K. Fukushima, M. Katoh, A. Fukami, Quantitative measurements of radiation damage to hydrated specimens observed in a wet gas environment., Journal of Electron Microscopy. 31 (1982) 119–26.
[21] K. FUKUSHIMA, A. ISHIKAWA, A. FUKAMI, Injection of Liquid into Environmental Cell for in situ Observations, Journal of Electron Microscopy. 34 (1985) 47.
[22] K. FUKUSHIMA, S. MURAKAMI, Structural Changes of Paramyosin Paracrystals under Evacuation in Film-Sealed Environmental Cell, Journal of Electron Microscopy. 34 (1985) 18–24.
[23] S. Giorgio, S. Sao Joao, S. Nitsche, D. Chaudanson, G. Sitja, C.R. Henry, Environmental electron microscopy (ETEM) for catalysts with a closed E-cell with carbon windows., Ultramicroscopy. 106 (2006) 503–7.
[24] K. Kishita, H. Sakai, H. Tanaka, H. Saka, K. Kuroda, M. Sakamoto, et al., Development of an analytical environmental TEM system and its application., Journal of Electron Microscopy. 58 (2009) 331–9.
[25] R.S. Pennington, J.R. Jinschek, J.B. Wagner, C.B. Boothroyd, R.E. Dunin-Borkowski, Atomic resolution imaging of in situ InAs nanowire dissolution at elevated temperature, Journal of Physics: Conference Series. 209 (2010) 012013.
[26] T.L. Daulton, B.J. Little, K. Lowe, J. Jones-meehan, In Situ Environmental Cell – Transmission Electron Microscopy Study of Microbial Reduction of Chromium ( VI ) Using Electron Energy Loss Spectroscopy, M Icroscopy M Icroanalysis. 7 (2001) 470–485.
[27] T.L. Daulton, B.J. Little, J.W. Kim, S. Newell, K. Lowe, Y. Furukawa, et al., Quantitative Environmental Cell-Transmission Electron Microscopy: Studies of Microbial Cr (VI) and Fe (III) Reduction, JEOL News. 37 (2002) 6.
[28] T.L. Daulton, Applications of Environmental Cell - Transmission Electron Microscopy for the Microcharacterization of Bio-Alteration Products and the Study of Bio-Processes, Microscopy and Microanalysis. 10 (2004) 380–381.
[29] R. Sharma, An environmental transmission electron microscope for in situ synthesis and characterization of nanomaterials, Journal of Materials Research. 20 (2005) 1695–1707.
[30] K. Kaznacheyev, Sealed cell for in-water measurements, in: AIP Conference Proceedings, AIP, 2000: pp. 395–400.
[31] N. de Jonge, D.B. Peckys, G.J. Kremers, D.W. Piston, Electron microscopy of whole cells in liquid with nanometer resolution., Proceedings of the National Academy of Sciences of the United States of America. 106 (2009) 2159–64.
[32] W.S. Lee, S.S. Lee, Piezoelectric microphone built on circular diaphragm, Sensors and Actuators A: Physical. 144 (2008) 367–373.
[33] R.I. Koning, A.J. Koster, Cryo-electron tomography in biology and medicine., Annals of Anatomy = Anatomischer Anzeiger : Official Organ of the Anatomische Gesellschaft. 191 (2009) 427–45.
[34] H.S. Jung, Technical approaches of single particle analysis following electron microscopy to pre-screening biological candidates targeted on high resolution studies, Journal of Analytical Science and Technology. 1 (2010) 66–70.
[35] R.K. Hite, S. Raunser, T. Walz, Revival of electron crystallography., Current Opinion in Structural Biology. 17 (2007) 389–95.
[36] Y. Fujiyoshi, Structural physiology based on electron crystallography., Protein Science : a Publication of the Protein Society. 20 (2011) 806–17.
[37] H. Zheng, S. a Claridge, A.M. Minor, a P. Alivisatos, U. Dahmen, Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy., Nano Letters. 9 (2009) 2460–5.
[38] D.-S. Yang, O.F. Mohammed, A.H. Zewail, Scanning ultrafast electron microscopy., Proceedings of the National Academy of Sciences of the United States of America. 107 (2010) 14993–8.
[39] H.S. Park, O.-H. Kwon, J.S. Baskin, B. Barwick, A.H. Zewail, Direct observation of martensitic phase-transformation dynamics in iron by 4D single-pulse electron microscopy., Nano Letters. 9 (2009) 3954–62.
[40] W.H. Massover, New and unconventional approaches for advancing resolution in biological transmission electron microscopy by improving macromolecular specimen preparation and preservation., Micron (Oxford, England : 1993). 42 (2011) 141–51.
[41] G. DuPou, F. Perrier, L. Durrieu, No Title, C.R.Acad.Sci. 251 (1960) 2836.
[42] H.G. Heide, No Title, Naturwissenschaften. 47 (1960) 313.
[43] Fujiyoshi, Specimen-holding device for electron microscope, U.S. Patent 5406087, 1995.
[44] U. Neuhäusler, C. Jacobsen, D. Schulze, D. Stott, S. Abend, A specimen chamber for soft X-ray spectromicroscopy on aqueous and liquid samples., Journal of Synchrotron Radiation. 7 (2000) 110–2.
[45] H. Stollberg, M. Pokorny, H.M. Hertz, A vacuum-compatible wet-specimen chamber for compact X-ray microscopy., Journal of Microscopy. 226 (2007) 71–3.
[46] K.-L. Liu, C.-C. Wu, Y.-J. Huang, H.-L. Peng, H.-Y. Chang, P. Chang, et al., Novel microchip for in situ TEM imaging of living organisms and bio-reactions in aqueous conditions., Lab on a Chip. 8 (2008) 1915–21.
[47] H. Zheng, R.K. Smith, Y.-W. Jun, C. Kisielowski, U. Dahmen, A.P. Alivisatos, Observation of single colloidal platinum nanocrystal growth trajectories., Science (New York, N.Y.). 324 (2009) 1309–12.
[48] N. de Jonge, W.C. Bigelow, G.M. Veith, Atmospheric pressure scanning transmission electron microscopy., Nano Letters. 10 (2010) 1028–31.
[49] J.E. Evans, K.L. Jungjohann, N.D. Browning, I. Arslan, Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy., Nano Letters. 11 (2011) 2809–13.
[50] H.L. Xin, H. Zheng, In situ observation of oscillatory growth of bismuth nanoparticles., Nano Letters. 12 (2012) 1470–4.
[51] D.B. Peckys, P. Mazur, K.L. Gould, N.D. Jonge, Fully Hydrated Yeast Cells Imaged with Electron Microscopy, Biophysj. 100 (2011) 2522–2529.
[52] D.B. Peckys, N. de Jonge, Visualizing gold nanoparticle uptake in live cells with liquid scanning transmission electron microscopy., Nano Letters. 11 (2011) 1733–8.
[53] U.M. Mirsaidov, H. Zheng, D. Bhattacharya, Y. Casana, P. Matsudaira, Direct observation of stick-slip movements of water nanodroplets induced by an electron beam., Proceedings of the National Academy of Sciences of the United States of America. 109 (2012) 7187–90.
[54] M. Krueger, S. Berg, D. Stone, E. Strelcov, D.A. Dikin, J. Kim, et al., Drop-casted self-assembling graphene oxide membranes for scanning electron microscopy on wet and dense gaseous samples., ACS Nano. 5 (2011) 10047–54.
[55] A. Kolmakov, D. a Dikin, L.J. Cote, J. Huang, M.K. Abyaneh, M. Amati, et al., Graphene oxide windows for in situ environmental cell photoelectron spectroscopy., Nature Nanotechnology. 6 (2011) 651–7.
[56] C. Champion, Electron impact ionization of liquid and gaseous water: a single-center partial-wave approach., Physics in Medicine and Biology. 55 (2010) 11–32.
[57] E. Alizadeh, L. Sanche, Precursors of Solvated Electrons in Radiobiological Physics and Chemistry., Chemical Reviews. (2012).
[58] M.J. Berger, J.S. Coursey, M.A. Zucker, J. Chang, ESTAR : Stopping Power and Range Tables for Electrons, NIST. (n.d.).
[59] G. Choppin, J. RYDBERG, J.-O. Liljenzin, Radiation Effects on Matter, in: Radiochemistry and Nuclear Chemistry, 3rd ed., Butterworth-Heinemann, 2001: pp. 166–191.
[60] S. Le Caër, Water Radiolysis: Influence of Oxide Surfaces on H2 Production under Ionizing Radiation, Water. 3 (2011) 235–253.
[61] C.C. Blair, S. D’Hondt, A.J. Spivack, R.H. Kingsley, Radiolytic hydrogen and microbial respiration in subsurface sediments., Astrobiology. 7 (2007) 951–70.
[62] G. Merga, B.H. Milosavljevic, D. Meisel, Radiolytic hydrogen yields in aqueous suspensions of gold particles., The Journal of Physical Chemistry. B. 110 (2006) 5403–8.
[63] M.J. Daly, A new perspective on radiation resistance based on Deinococcus radiodurans., Nature Reviews. Microbiology. 7 (2009) 237–45.
[64] J.K. Fredrickson, H.M. Kostandarithes, S.W. Li, a E. Plymale, M.J. Daly, Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1., Applied and Environmental Microbiology. 66 (2000) 2006–11.
[65] S. Levin-Zaidman, J. Englander, E. Shimoni, A.K. Sharma, K.W. Minton, A. Minsky, Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance?, Science (New York, N.Y.). 299 (2003) 254–6.
[66] D. a Bernstein, J.M. Eggington, M.P. Killoran, A.M. Misic, M.M. Cox, J.L. Keck, Crystal structure of the Deinococcus radiodurans single-stranded DNA-binding protein suggests a mechanism for coping with DNA damage., Proceedings of the National Academy of Sciences of the United States of America. 101 (2004) 8575–80.
[67] M. Eltsov, J. Dubochet, Fine structure of the Deinococcus radiodurans nucleoid revealed by cryoelectron microscopy of vitreous sections., Journal of Bacteriology. 187 (2005) 8047–54.
[68] M. Eltsov, J. Dubochet, Study of the Deinococcus radiodurans nucleoid by cryoelectron microscopy of vitreous sections: Supplementary comments., Journal of Bacteriology. 188 (2006) 6053–8; discussion 6059.
[69] J. Englander, E. Klein, V. Brumfeld, A.K. Sharma, A.J. Doherty, A. Minsky, DNA toroids: framework for DNA repair in Deinococcus radiodurans and in germinating bacterial spores., Journal of Bacteriology. 186 (2004) 5973–7.
[70] H.-Y. Hsieh, J.-L. Xiao, C. Lee, T.-W. Huang, C.-S. Yang, P.-C. Wang, et al., Au-Coated Polystyrene Nanoparticles with High-Aspect-Ratio Nanocorrugations via Surface-Carboxylation-Shielded Anisotropic Etching for Significant SERS Signal Enhancement, The Journal of Physical Chemistry C. 115 (2011) 16258–16267.
[71] H.-Y. Hsieh, T.-W. Huang, J.-L. Xiao, C.-S. Yang, C.-C. Chang, C.-C. Chu, et al., Fabrication and modification of dual-faced nano-mushrooms for tri-functional cell theranostics: SERS/fluorescence signaling, protein targeting, and drug delivery, Journal of Materials Chemistry. (2012).
[72] D.R.G. Mitchell, B. Schaffer, Scripting-customized microscopy tools for Digital Micrograph., Ultramicroscopy. 103 (2005) 319–32.
[73] M. a Gosálvez, Y. Xing, K. Sato, R.M. Nieminen, Atomistic methods for the simulation of evolving surfaces, Journal of Micromechanics and Microengineering. 18 (2008) 055029.
[74] T.-W. Huang, S.-Y. Liu, Y.-J. Chuang, H.-Y. Hsieh, C.-Y. Tsai, Y.-T. Huang, et al., Self-aligned wet-cell for hydrated microbiology observation in TEM., Lab on a Chip. 12 (2012) 340–7.
[75] G.-C. Yin, Y.-F. Song, M.-T. Tang, F.-R. Chen, K.S. Liang, F.W. Duewer, et al., 30 nm resolution x-ray imaging at 8 keV using third order diffraction of a zone plate lens objective in a transmission microscope, Applied Physics Letters. 89 (2006) 221122.
[76] G.-C. Yin, F.-R. Chen, Y. Hwu, H.-P.D. Shieh, K.S. Liang, Quantitative phase retrieval in transmission hard x-ray microscope, Applied Physics Letters. 90 (2007) 181118.
[77] R. V, Website of Doubling Time Online Calculator, (2006).
[78] T. Malis, S.C. Cheng, R.F. Egerton, EELS log-ratio technique for specimen-thickness measurement in the TEM., Journal of Electron Microscopy Technique. 8 (1988) 193–200.
[79] L. Wang, M.R. Chance, Structural mass spectrometry of proteins using hydroxyl radical based protein footprinting., Analytical Chemistry. 83 (2011) 7234–41.