簡易檢索 / 詳目顯示

研究生: 高政揚
論文名稱: 光與極冷85銣原子的交互作用
Interactions between Light and Ultracold 85Rb Atoms
指導教授: 劉怡維
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 116
中文關鍵詞: 光結合偶極光聚磁光陷阱極冷原子極冷分子
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文研究了在5S1/2+5P1/2極限,85銣分子0+u能階的凝聚損耗(trap-loss)光譜。在磁光聚(magneto-optical trap, MOT)內的凝聚損耗光譜是由於光結合(photoassociation)的作用。
    我們建造了磁光陷阱系統,用來冷卻與捕捉85銣原子。在一般的磁光聚條件,我們可獲得5х107個原子,其密度為1010個/立方公分。在磁光陷阱開啟9.8秒後,經過極化梯度冷卻,85銣原子溫度可下降到33μK。低溫將有助於局限85銣原子在偶極光聚(dipole trap)內。偶極光聚的頻率是在D1躍遷下,紅調變100 GHz。典型的偶極光聚所產生的高密度85銣原子,比在磁光聚多了一個數量級。更高密度的冷原子,能夠增強光結合率。
    我們也探討了產生磁光聚螢光的凝聚損耗光譜的最佳條件。我們得到了低解析度0+u激發態的凝聚損耗光譜,它是來自於亮磁光聚(bright MOT)的光結合85銣原子。更高的原子密度能夠大大增強冷原子的光結合率。
    將來,我們將透過觀測偶極光聚原子的凝聚損耗,偵測光結合。


    Contents 1 Introduction 1 1.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2 Background 5 2.1 Atomic Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Doppler Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Magneto-Optical Trap . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.4 Polarization Gradient Cooling . . . . . . . . . . . . . . . . . . . . . . 10 2.5 Dipole Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3 Experiment Setup 15 3.1 Laser System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.1.1 External Cavity Diode Laser . . . . . . . . . . . . . . . . . . . 15 3.1.2 Frequency Stabilization . . . . . . . . . . . . . . . . . . . . . . 16 3.1.3 Frequency Control . . . . . . . . . . . . . . . . . . . . . . . . 17 3.1.4 Trapping laser . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.5 Repump laser . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.1.6 Probe laser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2 Vacuum System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.1 Chamber Design . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.2.2 Rb source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.3 Chamber Construction . . . . . . . . . . . . . . . . . . . . . . 27 I CONTENTS II 3.2.4 Chamber Bake Out . . . . . . . . . . . . . . . . . . . . . . . . 27 3.3 Automatic Program Control of the Experiment . . . . . . . . . . . . 28 3.4 The Design of Magnetic Field . . . . . . . . . . . . . . . . . . . . . . 29 3.4.1 Quadrupole Coil . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.4.2 Current Servo and Switching circuit . . . . . . . . . . . . . . . 31 3.4.3 The compensation Coils . . . . . . . . . . . . . . . . . . . . . 36 3.5 The MOT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.6 MOT Aligning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.7 Detecting System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.7.1 CCD Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.7.2 PMT Detector . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.8 The MOT Characterization . . . . . . . . . . . . . . . . . . . . . . . 40 3.8.1 Loading of MOT . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.8.2 Optimising the MOT . . . . . . . . . . . . . . . . . . . . . . . 43 3.8.3 Atom Number Measurement . . . . . . . . . . . . . . . . . . . 46 3.9 Polarization Gradient Cooling . . . . . . . . . . . . . . . . . . . . . . 59 3.9.1 Temperature Measurement . . . . . . . . . . . . . . . . . . . . 59 3.9.2 Heating due to Imaging . . . . . . . . . . . . . . . . . . . . . 60 3.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4 Dipole Trap 66 4.1 Dipole Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2 Stabilized Titanium-Sapphire Laser . . . . . . . . . . . . . . . . . . . 69 4.2.1 Single Mode Laser Cavity . . . . . . . . . . . . . . . . . . . . 69 4.2.2 Single Mode Scanable setup . . . . . . . . . . . . . . . . . . . 70 4.2.3 Ti:sapphire laser performance . . . . . . . . . . . . . . . . . . 71 4.3 The Dipole Trap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.3.1 Gaussain Beam . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.3.2 The Gaussain Potential . . . . . . . . . . . . . . . . . . . . . . 75 4.4 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 CONTENTS III 4.4.1 Method of Alignment . . . . . . . . . . . . . . . . . . . . . . . 79 4.5 The Dipole Trap Image . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 5 Ultracold Photoassociation Spectroscopy 87 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 5.1.1 Photoassociation Spectoscopy . . . . . . . . . . . . . . . . . . 87 5.2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 5.2.1 The Born-Oppenheimer Approximation . . . . . . . . . . . . . 90 5.2.2 The Long Range Interaction . . . . . . . . . . . . . . . . . . . 92 5.2.3 The Franck-Condon Principle . . . . . . . . . . . . . . . . . . 94 5.2.4 Spin-Orbit Interaction . . . . . . . . . . . . . . . . . . . . . . 95 5.3 Experimental Apparatus and Method . . . . . . . . . . . . . . . . . . 99 5.3.1 The Laser System . . . . . . . . . . . . . . . . . . . . . . . . . 99 5.4 Search for the Trap-loss Signal . . . . . . . . . . . . . . . . . . . . . . 100 5.4.1 Rate Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.4.2 Trap-loss Signal . . . . . . . . . . . . . . . . . . . . . . . . . . 102 5.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 6 Discussion and Future Directions 107 6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.1.1 Creating of Science Chamber . . . . . . . . . . . . . . . . . . 107 6.2 Future Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 A Circuit diagram 109 A.1 Photo-Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 A.2 Lock-In . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

    References
    [1] K. M. Jones, E. Tiesinga, P. D. Lett, and P. S. Julienne, \Ultracold photoassociation
    spectroscopy: Long-range molecules and atomic scattering," Rev. Mod.
    Phys., 78, 483(2006).
    [2] Y. Huang, Production,Detection, and Trapping of Ultracold Molecular Rubidium.
    PhD thesis, Connecticut, 2006.
    [3] W. C. Stwalley and H. Wang, \Photoassociation of Ultracold Atoms: A New
    Spectroscopic Technique," J.Mol.Spectrosc, 195, 194(1999).
    [4] C. J. Foot, \Laser cooling and trapping of atoms," Contemp. Phys, 32, 369(1991).
    [5] H. J. Metcalf and P. van der Straten, Laser Cooling and Trapping. Springer,
    1999.
    [6] D. M. Stamper-Kurn, M. R. Andrews, A. P. Chikkatur, S. Inouye, H.-J. Miesner,
    J. Stenger, and W. Ketterle, \Optical Con nement of a Bose-Einstein Condensate,"
    Phys. Rev. Lett., 80, 2027(1998).
    [7] B. P. Anderson and M. A. Kasevich, \Macroscopic Quantum Interference from
    Atomic Tunnel Arrays," Science, 282, 1686(1998).
    [8] M. D. Barrett, J. A. Sauer, and M. S. Chapman, \All-Optical Formation of an
    Atomic Bose-Einstein Condensate," Phys. Rev. Lett., 87, 10404(2001).
    [9] T. Kinoshita, T. Wenger, and D. S. Weiss, \All-optical Bose-Einstein condensation
    using a compressible crossed dipole trap," Phys. Rev. A, 71, 011602(2005).
    [10] H. Katori, M. Takamoto, V. G. Pal'chikov, and V. D. Ovsiannikov, \Ultrastable
    Optical Clock with Neutral Atoms in an Engineered Light Shift Trap," Phys.
    Rev. Lett., 91, 173005(2003).
    [11] M. Takamoto, F.-L. Hong, R. Higashi, and H. Katori, \An optical lattice clock,"
    Nature, 435, 321(2005).
    [12] N. Schlosser, G. Reymond, and P. Grangier, \Collisional Blockade in Microscopic
    Optical Dipole Traps," Phys. Rev. Lett., 89, 23005(2002).
    111
    REFERENCES 112
    [13] J. McKeever, J. R. Buck, A. D. Boozer, A. Kuzmich, H.-C. Nagerl, D. M.
    Stamper-Kurn, and H. J. Kimble, \State-Insensitive Cooling and Trapping of
    Single Atoms in an Optical Cavity," Phys. Rev. Lett., 90, 133602(2003).
    [14] P. Staanum, S. D. Kraft, J. Lange, R. Wester, and M. Weidemuller, \Experimental
    Investigation of Ultracold Atom-Molecule Collisions," Phys. Rev. Lett.,
    96, 23201(2006).
    [15] N. Zahzam, T. Vogt, M. Mudrich, D. Comparat, and P. Pillet, \Atom-Molecule
    Collisions in an Optically Trapped Gas," Phys. Rev. Lett., 96, 23202(2006).
    [16] F. Lang, K. Winkler, C. Strauss, R. Grimm, and J. H. Denschlag, \Ultracold
    Triplet Molecules in the Rovibrational Ground State," Phys. Rev. Lett., 101,
    133005(2008).
    [17] J. Deiglmayr, A. Grochola, M. Repp, K. Mortlbauer, C. Gluck, J. Lange,
    O. Dulieu, R. Wester, and M. Weidemuller, \Formation of Ultracold Polar
    Molecules in the Rovibrational Ground State," Phys. Rev. Lett., 101,
    133004(2008).
    [18] J. J. Gilijamse, S. Hoekstra, S. A. Meek, M. Metsala, S. Y. T. van de Meerakker,
    G. Meijer, and G. C. Groenenboom, \The radiative lifetime of metastable CO
    (a3, v = 0)," J. Chem. Phys., 127, 221102(2007).
    [19] E. A. Hinds, \Testing time reversal symmetry using molecules," Physica Scripta,
    T70, 34(1997).
    [20] D. DeMille, F. Bay, S. Bickman, D. Kawall, D. Krause, S. E. Maxwell, and
    L. R. Hunter, \Investigation of PbO as a system for measuring the electric dipole
    moment of the electron," Phys. Rev. A, 61, 52507(2000).
    [21] J. J. Hudson, B. E. Sauer, M. R. Tarbutt, and E. A. Hinds, \Measurement of
    the Electron Electric Dipole Moment Using YbF Molecules," Phys. Rev. Lett.,
    89, 23003(2002).
    [22] M. G. Kozlov and D. DeMille, \Enhancement of the Electric Dipole Moment of
    the Electron in PbO," Phys. Rev. Lett., 89, 133001(2002).
    [23] D. Kawall, F. Bay, S. Bickman, Y. Jiang, and D. DeMille, \Precision Zeeman-
    Stark Spectroscopy of the Metastable a(1)[3+] State of PbO," Phys. Rev. Lett.,
    92, 133007(2004).
    [24] E. A. Hinds and P. G. H. Sandars, \Experiment to search for P- and T-violating
    interactions in the hyper ne structure of thallium
    uoride," Phys. Rev. A, 21,
    480(1980).
    [25] B. Ravaine, M. G. Kozlov, and A. Derevianko, \Atomic CP -violating polarizability,"
    Phys. Rev. A, 72, 12101(2005).
    REFERENCES 113
    [26] J. van Veldhoven, J. Kupper, H.L. Bethlem, B. Sartakov, A.J.A. van Roij, and
    G. Meijer, \Decelerated molecular beams for high-resolution spectroscopy," Eur.
    Phys. J. D, 31, 337(2004).
    [27] J. P. Karr, S. Kilic, and L. Hilico, \Energy levels and two-photon transition
    probabilities in the HD+ ion," J. Phys. B: At. Mol. Opt. Phys., 38, 853(2005).
    [28] C. Chin and V. V. Flambaum, \Enhanced Sensitivity to Fundamental Constants
    In Ultracold Atomic and Molecular Systems near Feshbach Resonances," Phys.
    Rev. Lett., 96, 230801(2006).
    [29] D. DeMille, S. Sainis, J. Sage, T. Bergeman, S. Kotochigova, and E. Tiesinga,
    \Enhanced Sensitivity to Variation of me=mp in Molecular Spectra," Phys. Rev.
    Lett., 100, 43202(2008).
    [30] T. Zelevinsky, S. Kotochigova, and J. Ye, \Precision Test of Mass-Ratio
    Variations with Lattice-Con ned Ultracold Molecules," Phys. Rev. Lett., 100,
    43201(2008).
    [31] E. R. Hudson, H. J. Lewandowski, B. C. Sawyer, and J. Ye, \Cold Molecule
    Spectroscopy for Constraining the Evolution of the Fine Structure Constant,"
    Phys. Rev. Lett., 96, 143004(2006).
    [32] I. Bloch, J. Dalibard, and W. Zwerger, \Many-body physics with ultracold gases,"
    Rev. Mod. Phys., 80, 885(2008).
    [33] C. Chin and R. Grimm, \Thermal equilibrium and ecient evaporation of an
    ultracold atom-molecule mixture," Phys. Rev. A, 69, 033612(2004).
    [34] M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim, C. Chin, J. H. Denschlag,
    and R. Grimm, \Crossover from a Molecular Bose-Einstein Condensate to a
    Degenerate Fermi Gas," Phys. Rev. Lett., 92, 120401(2004).
    [35] M. W. Zwierlein, C. A. Stan, C. H. Schunck, S. M. F. Raupach, A. J. Kerman,
    and W. Ketterle, \Condensation of Pairs of Fermionic Atoms near a Feshbach
    Resonance," Phys. Rev. Lett., 92, 120403(2004).
    [36] A. Micheli, G. K. Brennen, and P. Zoller, \A toolbox for lattice-spin models with
    polar molecules," Nat Phys, 2, 341(2006).
    [37] J. Doyle, B. Friedrich, R.V. Krems, and F. Masnou-Seeuws, \Editorial: Quo
    vadis, cold molecules?," Eur. Phys. J. D, 31, 149(2004).
    [38] K.-K. Ni, S. Ospelkaus, M. H. G. de Miranda, A. Pe'er, B. Neyenhuis, J. J. Zirbel,
    S. Kotochigova, P. S. Julienne, D. S. Jin, and J. Ye, \A High Phase-Space-Density
    Gas of Polar Molecules," Science, 322, 231(2008).
    [39] H. R. Thorsheim, J. Weiner, and P. S. Julienne, \Laser-induced photoassociation
    of ultracold sodium atoms," Phys. Rev. Lett., 58,2420(1987).
    REFERENCES 114
    [40] J. M. Sage, S. Sainis, T. Bergeman, and D. DeMille, \Optical Production of
    Ultracold Polar Molecules," Phys. Rev. Lett., 94, 203001(2005).
    [41] M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, and
    P. Pillet, \Optical Pumping and Vibrational Cooling of Molecules," Science, 321,
    232(2008).
    [42] K. Aikawa, D. Akamatsu, M. Hayashi, K. Oasa, J. Kobayashi, P. Naidon,
    T. Kishimoto, M. Ueda, and S. Inouye, \Coherent transfer of photoassociated
    molecules into the rovibrational ground state," preprint at
    http://arxiv.org/abs/1008.5034, 2010.
    [43] K. Bergmann, H. Theuer, and B. W. Shore, \Coherent population transfer among
    quantum states of atoms and molecules," Rev. Mod. Phys., 70, 1003(1998).
    [44] \Laser Cooling and Trapping of Atoms," J. Opt. Soc. Am. B, 6, 2023(1989).
    [45] J. P. Gordon and A. Ashkin, \Motion of atoms in a radiation trap," Phys. Rev.
    A, 21, 1606(1980).
    [46] J. D. Miller, R. A. Cline, and D. J. Heinzen, \Far-o -resonance optical trapping
    of atoms," Phys. Rev. A, 47, R4567(1993).
    [47] R. A. Nyman, G. Varoquaux, B. Villier, D. Sacchet, F. Moron, Y. L. Coq, A. Aspect,
    and P. Bouyer, \Tapered-ampli ed antire
    ection-coated laser diodes for
    potassium and rubidium atomic-physics experiments," Rev. Sci. Instrum., 77,
    033105(2006).
    [48] W. Ren-Jr, \Fluorescence Spectroscopy of Atomic Rubidium In a Magneto-
    Optical Trap," Master's thesis, Department of Physics, National Tsing Hua University,
    Taiwan, 2007.
    [49] K. G. Libbrecht and J. L. Hall, \A low-noise high-speed diode laser current
    controlled," Rev. Sci. Instrum, 64, 2133(1993).
    [50] \School of physics: Optics group atom optics the university of melbourne," tech.
    rep., http://optics.ph.unimelb.edu.au/atomopt/diodes.html.
    [51] K. B. MacAdam, A. Steinbach, and C. Wieman, \A narrow-band tunable diode
    laser system with grating feedback, and a saturated absorption spectrometer for
    Cs and Rb," Am. J. Phys, 60, 1098(1992).
    [52] H. J. Lewandowski, D. M. Harber, D. L. Whitaker, and E. A. Cornell, \Simpli ed
    System for Creating a Bose-Einstein Condensate," J. Low Temp. Phys, 132,
    309(2003).
    [53] T. Dar-Yuen, \Ultracold Collisional Losses Of Rubidium atoms in two species
    Magneto-Optical Trap," Master's thesis, Department of Physics, National Tsing
    Hua University, Taiwan, 2006.
    REFERENCES 115
    [54] K. E. Gibble, S. Kasapi, and S. Chu, \Improved magneto-optic trapping in a
    vapor cell," Opt. Lett., 17, 526(1992).
    [55] Y.-C. Chen, Y.-A. Liao, L. Hsu, and I. A. Yu, \Simple technique for directly and
    accurately measuring the number of atoms in a magneto-optical trap," Phys.
    Rev. A, 64, 031401(2001).
    [56] D. S. Weiss, E. Riis, Y. Shevy, P. J. Ungar, and S. Chu, \Optical molasses and
    multilevel atoms: experiment," J. Opt. Soc. Am. B, 6, 2072(1989).
    [57] M. A. Jo e, W. Ketterle, A. Martin, and D. E. Pritchard, \Transverse cooling
    and de
    ection of an atomic beam inside a Zeeman slower," J. Opt. Soc. Am. B,
    10, 2257(1993).
    [58] J.-M. Z.-J. J. Dalibard, J. Raimond, ed., Fundamental systems in quantum optics.
    Amsterdam ; New York : North-Holland, 1992.
    [59] R. Grimm, M. Weidemler, and Y. B. Ovchinnikov, \Optical Dipole Traps for
    Neutral Atoms," 42, 95(2000).
    [60] J. P. Gordon and A. Ashkin, \Motion of atoms in a radiation trap," Phys. Rev.
    A, 21, 1606(1980).
    [61] M. Kasevich, D. S. Weiss, E. Riis, K. Moler, S. Kasapi, and S. Chu, \Atomic
    velocity selection using stimulated Raman transitions," Phys. Rev. Lett., 66,
    2297(1991).
    [62] J. D. Miller, R. A. Cline, and D. J. Heinzen, \Photoassociation spectrum of
    ultracold Rb atoms," Phys. Rev. Lett., 71, 2204(1993).
    [63] P. D. Lett, K. Helmerson, W. D. Phillips, L. P. Ratli , S. L. Rolston, and M. E.
    Wagshul, \Spectroscopy of Na2 by photoassociation of laser-cooled Na," Phys.
    Rev. Lett., 71, 2200(1993).
    [64] P. D. Lett, P. S. Julienne, and W. D. Phillips, \Photoassociative Spectroscopy
    of Laser-Cooled Atoms," Ann.Rev.Phys.Chem, 46, 423(1995).
    [65] S. J. Park, S. W. Suh, Y. S. Lee, and G.-H. Jeung, \Theoretical Study of the
    Electronic States of the Rb2 Molecule," Journal of Molecular Spectroscopy, 207,
    129(2001).
    [66] T. Bergeman, J. Qi, D. Wang, Y. Huang, H. K. Pechkis, E. E. Eyler, P. L. Gould,
    W. C. Stwalley, R. A. Cline, J. D. Miller, and D. J. Heinzen, \Photoassociation
    of 85Rb atoms into 0+
    u states near the 5S+5P atomic limits," J. Phys. B: At. Mol.
    Opt. Phys, 39, S813(2006).
    [67] A. Fioretti, C. Amiot, C.M. Dion, O. Dulieu, M. Mazzoni, G. Smirne, and C.
    Gabbanini, \Cold rubidium molecule formation through photoassociation: A
    spectroscopic study of the 0􀀀g long-range state of 87Rb ," Eur. Phys. J. D, 15,
    189(2001).
    REFERENCES 116
    [68] Y. Huang, J. Qi, H. K. Pechkis, D. Wang, E. E. Eyler, P. L. Gould, and W. C.
    Stwalley, \Formation, detection and spectroscopy of ultracold Rb2 in the ground
    X1+
    g state," J. Phys. B: At. Mol. Opt. Phys, 39, S857(2006).
    [69] M. Movre and G. Pichler, \Resonance interaction and self-broadening of alkali
    resonance lines. I. Adiabatic potential curves," J. Phys. B: At. Mol. Opt. Phys.,
    10, 2631(1977).
    [70] W. C. Stwalley, Y.-H. Uang, and G. Pichler, \Pure Long-Range Molecules," Phys.
    Rev. Lett., 41, 1164(1978).
    [71] H. Wang, P. L. Gould, and W. C. Stwalley, \Long-range interaction of the
    39K(4s)+39K(4p) asymptote by photoassociative spectroscopy. I. The 0􀀀g pure
    long-range state and the long-range potential constants," J. Chem. Phys, 106,
    7899(1997).
    [72] H. Wang and W. C. Stwalley, \Ultracold photoassociative spectroscopy of heteronuclear
    alkali-metal diatomic molecules," J. Chem. Phys, 108, 5767(1998).
    [73] D. Ho fmann, P. Feng, and T. Walker, \Measurements of Rb trap-loss collision
    spectra," J. Opt. Soc. Am. B, 11, 712(1994).
    [74] R. A. Cline, J. D. Miller, and D. J. Heinzen, \Study of Rb2 Long-Range
    States by High-REsolution Photoassociation Spectroscopy," Phys. Rev. Lett., 73,
    2636(1994).
    [75] J. R. Gardner, R. A. Cline, J. D. Miller, D. J. Heinzen, H. M. J. M. Boesten,
    and B. J. Verhaar, \Collisions of Doubly Spin-Polarized, Ultracold 85Rb Atoms,"
    Phys. Rev. Lett., 74, 3764(1995).
    [76] W. I. McAlexander, E. R. I. Abraham, N. W. M. Ritchie, C. J. Williams, H. T. C.
    Stoof, and R. G. Hulet, \Precise atomic radiative lifetime via photoassociative
    spectroscopy of ultracold lithium," Phys. Rev. A, 51, R871(1995).
    [77] E. R. I. Abraham, W. I. McAlexander, C. A. Sackett, and R. G. Hulet, \Spectroscopic
    Determination of the s-Wave Scattering Length of Lithium," Phys. Rev.
    Lett., 74, 1315(1995).
    [78] L. P. Ratli , M. E. Wagshul, P. D. Lett, S. L. Rolston, and W. D. Phillips,
    \Photoassociative spectroscopy of 1g, 0+
    u , and 0􀀀g states of Na2," J. Chem. Phys.,
    101, 2638(1994).
    [79] C. D. Wallace, T. P. Dinneen, K.-Y. N. Tan, T. T. Grove, and P. L. Gould,
    \Isotopic di erence in trap loss collisions of laser cooled rubidium atoms," Phys.
    Rev. Lett., 69, 957(1992).
    [80] C. D. Wallace, V. Sanchez-Villicana, T. P. Dinneen, and P. L. Gould, \Suppression
    of Trap Loss Collisions at Low Temperature," Phys. Rev. Lett., 74,
    1087(1995).
    REFERENCES 117
    [81] P. Pillet, A. Crubellier, A. Bleton, O. Dulieu, P. Nosbaum, I. Mourachko, and
    F. Masnou-Seeuws, \Photoassociation in a gas of cold alkali atoms: I. Perturbative
    quantum approach," J. Phys. B: At. Mol. Opt. Phys., 30, 2801(1997).
    [82] K. M. O Hara, Optical trapping and evaporative cooling of fermionic atoms. PhD
    thesis, Duke University, 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE