工業革命至今,化石燃料的大量使用,造成二氧化碳濃度增高,使得全球氣候變遷,因此二氧化碳的捕集及封存技術就顯得相當重要。化學吸收法是目前最廣為使用同時也是最有效率的捕獲技術,本研究以高濃度二乙烯三胺(Diethylenetriamine,DETA)與二次乙亞胺(Piperazine,PZ)的混合水溶液,並將醇胺類總濃度控制在8m,於超重力旋轉床(Rotating packed bed,RPB)中,進行二氧化碳吸收實驗。由於PZ於水中溶解度並不高,若吸收劑中的PZ濃度過高,則會使吸收劑容易結晶析出。於是本研究進行各種吸收劑的結晶測試實驗。結果發現同溫度下,20g與200g樣品的結晶狀況不盡相同。但於二氧化碳吸收實驗的整個過程中,皆是在恆溫50℃下進行,因此吸收劑的結晶與否對於實驗操作並不會有太大的影響。
另外,進行二氧化碳吸收實驗前,本研究先以30wt%的乙醇胺(monoethanolamine,MEA)作為吸收劑,利用氮氣與二氧化碳的個別質量平衡,證明超重力旋轉床整體系統均遵循質量守恆定理。再者,由二氧化碳的吸收實驗結果得知,九種吸收劑的吸收效果差異並不大。最後,本研究以超重力旋轉床的模型,嘗試模擬8mPZ的實驗結果。但整體的模擬效果並不好,其因是8mPZ的基本物理性質在文獻上較不完善。因此需要後續基本物理性質相關數據的量測作業,才可能使模擬結果變的更準確。
[1] J. Albo, P. Luis, and A. Irabien, "Carbon Dioxide Capture from Flue Gases Using a Cross-Flow Membrane Contactor and the Ionic Liquid 1-Ethyl-3-methylimidazolium Ethylsulfate," Industrial & Engineering Chemistry Research, vol. 49, pp. 11045-11051, Nov 3 2010.
[2] T. H. Oh, "Carbon capture and storage potential in coal-fired plant in Malaysia-A review," Renewable & Sustainable Energy Reviews, vol. 14, pp. 2697-2709, Dec 2010.
[3] B. Erlach, M. Schmidt, and G. Tsatsaronis, "Comparison of carbon capture IGCC with pre-combustion decarbonisation and with chemical-looping combustion," Energy, vol. 36, pp. 3804-3815, Jun 2011.
[4] H. H. Cheng, J. F. Shen, and C. S. Tan, "CO2 capture from hot stove gas in steel making process," International Journal of Greenhouse Gas Control, vol. 4, pp. 525-531, May 2010.
[5] M. Caplow, "KINETICS OF CARBAMATE FORMATION AND BREAKDOWN," Journal of the American Chemical Society, vol. 90, pp. 6795-&, 1968.
[6] P. V. Danckwerts, "REACTION OF CO2 WITH ETHANOLAMINES," Chemical Engineering Science, vol. 34, pp. 443-446, 1979.
[7] P. M. M. Blauwhoff, G. F. Versteeg, and W. P. M. Vanswaaij, "A STUDY ON THE REACTION BETWEEN CO2 AND ALKANOLAMINES IN AQUEOUS-SOLUTIONS," Chemical Engineering Science, vol. 39, pp. 207-225, 1984.
[8] T. L. Donaldson and Y. N. Nguyen, "CARBON-DIOXIDE REACTION-KINETICS AND TRANSPORT IN AQUEOUS AMINE MEMBRANES," Industrial & Engineering Chemistry Fundamentals, vol. 19, pp. 260-266, 1980.
[9] E. B. Rinker, S. S. Ashour, and O. C. Sandall, "KINETICS AND MODELING OF CARBON-DIOXIDE ABSORPTION INTO AQUEOUS-SOLUTIONS OF N-METHYLDIETHANOLAMINE," Chemical Engineering Science, vol. 50, pp. 755-768, Mar 1995.
[10] G. Sartori and D. W. Savage, "Sterically Hindered Amines for Co2 Removal from Gases," Industrial & Engineering Chemistry Fundamentals, vol. 22, pp. 239-249, 1983.
[11] A. Aroonwilas and P. Tontiwachwuthikul, "High-efficiency structured packing for CO2 separation using 2-amino-2-methyl-1-propanol (AMP)," Separation and Purification Technology, vol. 12, pp. 67-79, Sep 1997.
[12] A. Aroonwilas and P. Tontiwachwuthikul, "Mass transfer coefficients and correlation for CO2 absorption into 2-amino-2-methyl-1-propanol (AMP) using structured packing," Industrial & Engineering Chemistry Research, vol. 37, pp. 569-575, Feb 1998.
[13] C. H. Liao and M. H. Li, "Kinetics of absorption of carbon dioxide into aqueous solutions of monoethanolamine plus N-methyldiethanolamine," Chemical Engineering Science, vol. 57, pp. 4569-4582, Nov 2002.
[14] D. Aaron and C. Tsouris, "Separation of CO2 from flue gas: A review," Separation Science and Technology, vol. 40, pp. 321-348, 2005.
[15] T. Supap, R. Idem, P. Tontiwachwuthikul, and C. Saiwan, "Analysis of monoethanolamine and its oxidative degradation products during CO2 absorption from flue gases: A comparative study of GC-MS, HPLC-RID, and CE-DAD analytical techniques and possible optimum combinations," Industrial & Engineering Chemistry Research, vol. 45, pp. 2437-2451, Apr 2006.
[16] S. A. Freeman, R. Dugas, D. H. Van Wagener, T. Nguyen, and G. T. Rochelle, "Carbon dioxide capture with concentrated, aqueous piperazine," International Journal of Greenhouse Gas Control, vol. 4, pp. 119-124, Mar 2010.
[17] C. S. Tan and J. E. Chen, "Absorption of carbon dioxide with piperazine and its mixtures in a rotating packed bed," Separation and Purification Technology, vol. 49, pp. 174-180, Apr 2006.
[18] C. H. Yu, H. H. Cheng, and C. S. Tan, "CO2 capture by alkanolamine solutions containing diethylenetriamine and piperazine in a rotating packed bed," International Journal of Greenhouse Gas Control, vol. 9, pp. 136-147, Mar 2012.
[19] S. A. Freeman, J. Davis, and G. T. Rochelle, "Degradation of aqueous piperazine in carbon dioxide capture," International Journal of Greenhouse Gas Control, vol. 4, pp. 756-761, Sep 2010.
[20] G. Rochelle, E. Chen, S. Freeman, D. Van Wagener, Q. Xu, and A. Voice, "Aqueous piperazine as the new standard for CO2 capture technology," Chemical Engineering Journal, vol. 171, pp. 725-733, Jul 2011.
[21] S. Bishnoi and G. T. Rochelle, "Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility," Chemical Engineering Science, vol. 55, pp. 5531-5543, Nov 2000.
[22] P. W. J. Derks, H. B. S. Dijkstra, J. A. Hogendoorn, and G. F. Versteeg, "Solubility of carbon dioxide in aqueous piperazine solutions," Aiche Journal, vol. 51, pp. 2311-2327, Aug 2005.
[23] V. Ermatchkov, A. P. S. Kamps, D. Speyer, and G. Maurer, "Solubility of carbon dioxide in aqueous solutions of piperazine in the low gas loading region," Journal of Chemical and Engineering Data, vol. 51, pp. 1788-1796, Sep 2006.
[24] A. Hartono, E. F. da Silva, and H. F. Svendsen, "Kinetics of carbon dioxide absorption in aqueous solution of diethylenetriamine (DETA)," Chemical Engineering Science, vol. 64, pp. 3205-3213, Jul 2009.
[25] A. Hartono, E. F. da Silva, H. Grasdalen, and H. F. Svendsen, "Qualitative determination of species in DETA-H2O-CO2 system using C-13 NMR spectra," Industrial & Engineering Chemistry Research, vol. 46, pp. 249-254, Jan 2007.
[26] C. Ramshaw and R. H. Mallinson, "Mass transfer appts. - has fluid permeable element formed of strands, fibres, fibrils or filaments," EP23745-A; EP23745-B.
[27] C. Ramshaw, "HIGEE DISTILLATION - AN EXAMPLE OF PROCESS INTENSIFICATION," Chemical Engineer-London, pp. 13-14, 1983.
[28] C. C. Lin, W. T. Liu, and C. S. Tan, "Removal of carbon dioxide by absorption in a rotating packed bed," Industrial & Engineering Chemistry Research, vol. 42, pp. 2381-2386, May 2003.
[29] M. S. Jassim, G. Rochelle, D. Eimer, and C. Ramshaw, "Carbon dioxide absorption and desorption in aqueous monoethanolamine solutions in a rotating packed bed," Industrial & Engineering Chemistry Research, vol. 46, pp. 2823-2833, Apr 2007.
[30] P. Sandilya, D. P. Rao, A. Sharma, and G. Biswas, "Gas-phase mass transfer in a centrifugal contactor," Industrial & Engineering Chemistry Research, vol. 40, pp. 384-392, Jan 2001.
[31] T. Kelleher and J. R. Fair, "Distillation studies in a high-gravity contactor," Industrial & Engineering Chemistry Research, vol. 35, pp. 4646-4655, Dec 1996.
[32] K. Onda, H. Takeuchi, and Y. Okumoto, "Mass Transfer Coefficient between Gas and Liquid Phases in Packed Columns," J. Chem. Eng. Jpn., vol. 1, 1968.
[33] H. H. Tung and R. S. H. Mah, "MODELING LIQUID MASS-TRANSFER IN HIGEE SEPARATION PROCESS," Chemical Engineering Communications, vol. 39, pp. 147-153, 1985.
[34] T. B. Drew, G. R. Cokelet, J. W. Hoopes, and V. Theodore, "Advances in Chemical Engineering. Academic Press," Academic Press,New York, 1981.
[35] D. W. v. Krevelen and P. J. Hoftijzer, "Kinetics of gas–liquid reaction general theory.," Recl. Trav. Chim., vol. Pays-Bas 67, pp. 563–586, 1948.
[36] A. Samanta, S. Roy, and S. S. Bandyopadhyay, "Physical solubility and diffusivity of N2O and CO2 in aqueous solutions of piperazine and (N-methyldiethanolamine plus piperazine)," Journal of Chemical and Engineering Data, vol. 52, pp. 1381-1385, Jul-Aug 2007.
[37] S. A. Freeman and G. T. Rochelle, "Density and Viscosity of Aqueous (Piperazine plus Carbon Dioxide) Solutions," Journal of Chemical and Engineering Data, vol. 56, pp. 574-581, Mar 2011.