簡易檢索 / 詳目顯示

研究生: 簡士宏
Chien, Shih-Hung
論文名稱: 粒線體相關降解途徑(MAD)在支鏈胺基酸(BCAA)生合成中的作用
The role of the mitochondria-associated degradation (MAD) pathway in branched-chain amino acid (BCAA) biosynthesis
指導教授: 廖品超
Liao, Pin-Chao
口試委員: 李岳倫
Lee, Yueh-Luen
張壯榮
Chang, Chuang-Rung
徐子勝
Hsu, Tzu-Sheng
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2024
畢業學年度: 112
語文別: 英文
論文頁數: 73
中文關鍵詞: 粒線體品質控管蛋白質恆定粒線體蛋白酶釀酒酵母Doa1Pim1
外文關鍵詞: Mitochondrial quality control, Protein homeostasis, Mitochondrial protease, Saccharomyces cerevisiae, Doa1, Pim1
相關次數: 點閱:50下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 粒線體是生成ATP和代謝物生產必要的胞器。許多粒線體品質調控路徑,如粒線體自噬、粒線體蛋白酶和粒線體相關降解(Mitochondria-associated degradation, MAD)參與維持粒線體的健康和功能。在MAD中,未折疊的蛋白質會被泛素化,由保守的蛋白質複合體AAA-ATPase Cdc48(在哺乳動物中為VCP/p97)及其輔因子Doa1識別,從粒線體中移除並送往蛋白酶體降解。我們先前的研究顯示,兩種粒線體基質蛋白,Kgd1(α-酮戊二酸脫氫酶)和Pim1(Lon蛋白酶)是MAD的受質。由於Pim1是一種粒線體蛋白酶,我們研究MAD和Pim1是否以及如何共同調節Pim1受質的降解。我們針對Pim1的受質Ilv2,此為一種參與釀酒酵母支鏈氨基酸(BCAA)生合成的酶。我們首先確認了Pim1的降解在發酵和非發酵條件下都受到MAD的調控。接著,在正常或氧化壓力條件下時,MAD抑制導致參與BCAA生物合成的酶,包括Ilv2、Ilv3和Ilv6的量都會下降。此外,在呼吸條件下,doa1∆細胞中Ilv2的量下降可以透過突變的Pim1恢復。這一結果支持了,Ilv2降解增加是由於MAD抑制所導致Pim1增加所致。我們還發現,MAD的抑制會導致ILV2基因表現量的下降。最後,MAD的抑制導致粒線體膜電位(∆Ѱ)和BCAA水平的下降。因此,我們的研究顯示,在呼吸條件下,MAD可透過調節Ilv2生合成和降解的平衡狀態來調控BCAA的生合成。


    Mitochondria are essential organelles for the generation of ATP and metabolite production. Several quality control pathways such as mitophagy, mitochondrial proteases and mitochondria-associated degradation (MAD) are involved in maintaining mitochondrial fitness and function. In MAD, unfolded proteins are ubiquitinated, recognized by a conserved protein complex AAA-ATPase Cdc48 (VCP/p97 in mammals) with its adapter Doa1, removed from mitochondria and degraded by proteasomes. Our previous study revealed that two matrix proteins, Kgd1 (alpha-ketoglutarate dehydrogenase) and Pim1 (Lon protease) are MAD substrates. Since Pim1 is a mitochondrial protease, we investigated whether and how MAD and Pim1 coordinate to regulate the turnover of Pim1 substrates. We focused on Pim1 substrates Ilv2, an enzyme involved in branched-chain amino acid (BCAA) biosynthesis in Saccharomyces cerevisiae. We first confirmed that the turnover of Pim1 was regulated by MAD under both fermentative and non-fermentative conditions. Next, enzymes involved in BCAA biosynthesis including Ilv2, Ilv3 and Ilv6 are decreased when MAD is inhibited under basal or oxidative stress conditions. Furthermore, under respiratory conditions, the reduced protein level of Ilv2 in doa1∆ cells can be restored by the catalytic domain-mutated Pim1. This result supports the idea that the degradation of Ilv2 is due to the increased functional Pim1 upon MAD inhibition. Additionally, we found that inhibition of MAD results in a decrease of ILV2 expression levels. Finally, inhibition of MAD leads to reduced mitochondrial membrane potential (ΔѰ) and BCAA levels. Collectively, our study reveals that MAD regulates BCAA biosynthesis by maintaining the homeostasis of Ilv2 biogenesis and degradation that is regulated by Pim1 under respiratory conditions.

    Abstract I 中文摘要 II Acknowledgments III Table of contents 1 Chapter 1. Introduction 4 1.1 Mitochondria functions 4 1.2 Mitochondrial quality control pathway: Mitochondrial fission and fusion 5 1.4 Mitochondrial quality control pathway: Mitochondria-associated degradation (MAD) 6 1.5 Mitochondrial quality control pathway: Mitochondrial protease 8 1.6 Branched-chain amino acid (BCAA) biosynthesis in Saccharomyces cerevisiae 9 1.7 Hypothesis 10 Chapter 2. Materials and Methods 12 2.1 Yeast growth conditions 12 2.2 Yeast strain construction 12 2.3 CRISPR for pim1S1015A mutation 13 2.4 MG132 treatment 14 2.5 Total cell lysate preparation 15 2.6 Isolation of mitochondria 15 2.7 Proteinase K treatment 16 2.8 Western blot analysis 17 2.9 Membrane potential measurement using DiOC6 staining 18 2.10 Branched-chain amino acid levels 19 2.11 RNA extraction, cDNA synthesis and quantitative PCR 19 2.12 Statistical analysis 20 Chapter 3. Results 21 3.1 MAD contributes to the mitochondrial membrane potential (ΔѰ) 21 3.2 MAD is responsible for the degradation of mitochondria matrix protein Pim1 21 3.3 MAD regulates Pim1 substrate Ilv2 22 3.4 MAD regulates BCAA biosynthesis enzymes Ilv2, Ilv6 and Ilv3 23 3.5 Accumulated Pim1 resulted from MAD inhibition contributes to the degradation of Ilv2 under respiratory conditions 24 3.6 MAD and Lon protease Pim1 contributes to ILV2 gene expression 25 3.7 MAD contributes to BCAA production 25 Chapter 4. Discussion 27 4.1 MAD pathway regulation of BCAA biosynthesis enzyme Ilv2 is by turnover of mitochondrial Lon protease Pim1 27 4.2 Inhibition of MAD or Pim1 results in reduced Ilv2 biogenesis 28 4.3 Inhibition of MAD results in lower BCAA levels 28 4.4 Ilv2 tagged with 13Myc at the C-terminus has mitochondrial import defects 29 Figures 31 Figure 1. The MAD pathway and mitochondrial protease Pim1 31 Figure 2. BCAA biosynthesis in Saccharomyces cerevisiae 32 Figure 3. Generation of pim1S1015A using CRISPR 33 Figure 4. Deletion of DOA1 resulted in a decrease of the mitochondrial membrane potential (ΔѰ) 35 Figure 5. MAD substrate Pim1 accumulated in mitochondria in doa1∆ cells 40 Figure 6. Ilv2 tagged with 13Myc has a non-imported precursor and growth defect 43 Figure 7. BCAA biosynthesis enzymes Ilv2, Ilv3 and Ilv6 are decreased in doa1∆ cells 47 Figure 8. MAD-inhibition induced Pim1 accumulation contributes to the reduced Ilv2 levels 51 Figure 9. Deletion of DOA1 or PIM1 mutant resulted in reduced Ilv2 biogenesis 52 Figure 10. Deletion of DOA1 resulted in a decrease of BCAA production 53 Figure 11. Schematic of MAD regulation of BCAA biosynthesis 54 Tables 55 Table 1. Saccharomyces cerevisiae strain list 55 Table 2. Primer list 62 Abbreviation 65 References 67

    1. Brand, M.D., et al., The role of mitochondrial function and cellular bioenergetics in ageing and disease. Br J Dermatol, 2013. 169 Suppl 2(0 2): p. 1-8.
    2. Protasoni, M. and M. Zeviani, Mitochondrial Structure and Bioenergetics in Normal and Disease Conditions. Int J Mol Sci, 2021. 22(2).
    3. Song, J., J.M. Herrmann, and T. Becker, Quality control of the mitochondrial proteome. Nat Rev Mol Cell Biol, 2021. 22(1): p. 54-70.
    4. Chacinska, A., et al., Importing mitochondrial proteins: machineries and mechanisms. Cell, 2009. 138(4): p. 628-44.
    5. Fang, E.F., et al., Mitophagy inhibits amyloid-beta and tau pathology and reverses cognitive deficits in models of Alzheimer's disease. Nat Neurosci, 2019. 22(3): p. 401-412.
    6. Abramov, A.Y., et al., Mechanism of neurodegeneration of neurons with mitochondrial DNA mutations. Brain, 2010. 133(Pt 3): p. 797-807.
    7. Mortiboys, H., et al., Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts. Ann Neurol, 2008. 64(5): p. 555-65.
    8. Rakovic, A., et al., Effect of endogenous mutant and wild-type PINK1 on Parkin in fibroblasts from Parkinson disease patients. Hum Mol Genet, 2010. 19(16): p. 3124-37.
    9. Bhansali, S., et al., Alterations in Mitochondrial Oxidative Stress and Mitophagy in Subjects with Prediabetes and Type 2 Diabetes Mellitus. Front Endocrinol (Lausanne), 2017. 8: p. 347.
    10. Aanen, D.K. and M.F. Maas, Recruitment of healthy mitochondria fuels transmissible cancers. Trends Genet, 2012. 28(1): p. 1-6.
    11. Rebbeck, C.A., A.M. Leroi, and A. Burt, Mitochondrial capture by a transmissible cancer. Science, 2011. 331(6015): p. 303.
    12. Heo, J.M., et al., A stress-responsive system for mitochondrial protein degradation. Mol Cell, 2010. 40(3): p. 465-80.
    13. Wu, X., L. Li, and H. Jiang, Doa1 targets ubiquitinated substrates for mitochondria-associated degradation. Journal of Cell Biology, 2016. 213(1): p. 49-63.
    14. Liao, P.C., et al., Mitochondria-Associated Degradation Pathway (MAD) Function beyond the Outer Membrane. Cell Rep, 2020. 32(2): p. 107902.
    15. Adams, J., The proteasome: structure, function, and role in the cell. Cancer Treat Rev, 2003. 29 Suppl 1: p. 3-9.
    16. Ding, W.X. and X.M. Yin, Mitophagy: mechanisms, pathophysiological roles, and analysis. Biol Chem, 2012. 393(7): p. 547-64.
    17. Westermann, B., Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol, 2010. 11(12): p. 872-84.
    18. Ishihara, N., et al., Regulation and physiologic functions of GTPases in mitochondrial fusion and fission in mammals. Antioxid Redox Signal, 2013. 19(4): p. 389-99.
    19. Eura, Y., et al., Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J Biochem, 2003. 134(3): p. 333-44.
    20. Koshiba, T., et al., Structural Basis of Mitochondrial Tethering by Mitofusin Complexes. Science, 2004. 305(5685): p. 858-862.
    21. Anand, R., et al., The i-AAA protease YME1L and OMA1 cleave OPA1 to balance mitochondrial fusion and fission. J Cell Biol, 2014. 204(6): p. 919-29.
    22. Liesa, M., M. Palacin, and A. Zorzano, Mitochondrial dynamics in mammalian health and disease. Physiol Rev, 2009. 89(3): p. 799-845.
    23. Serasinghe, M.N. and J.E. Chipuk, Mitochondrial Fission in Human Diseases. Handb Exp Pharmacol, 2017. 240: p. 159-188.
    24. Javadov, S., et al., Expression of mitochondrial fusion-fission proteins during post-infarction remodeling: the effect of NHE-1 inhibition. Basic Res Cardiol, 2011. 106(1): p. 99-109.
    25. Rehman, J., et al., Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J, 2012. 26(5): p. 2175-86.
    26. Ferre, M., et al., Improved locus-specific database for OPA1 mutations allows inclusion of advanced clinical data. Hum Mutat, 2015. 36(1): p. 20-5.
    27. Santos, D., et al., The Impact of Mitochondrial Fusion and Fission Modulation in Sporadic Parkinson's Disease. Mol Neurobiol, 2015. 52(1): p. 573-86.
    28. Huang, Q., et al., Increased mitochondrial fission promotes autophagy and hepatocellular carcinoma cell survival through the ROS-modulated coordinated regulation of the NFKB and TP53 pathways. Autophagy, 2016. 12(6): p. 999-1014.
    29. Onishi, M., et al., Molecular mechanisms and physiological functions of mitophagy. The EMBO Journal, 2021. 40(3): p. e104705.
    30. Kim, I., S. Rodriguez-Enriquez, and J.J. Lemasters, Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys, 2007. 462(2): p. 245-53.
    31. Liu, L., et al., Mitochondrial outer-membrane protein FUNDC1 mediates hypoxia-induced mitophagy in mammalian cells. Nat Cell Biol, 2012. 14(2): p. 177-85.
    32. Murakawa, T., et al., Bcl-2-like protein 13 is a mammalian Atg32 homologue that mediates mitophagy and mitochondrial fragmentation. Nat Commun, 2015. 6: p. 7527.
    33. Novak, I., et al., Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep, 2010. 11(1): p. 45-51.
    34. Isoda, T., et al., Atg45 is an autophagy receptor for glycogen, a non-preferred cargo of bulk autophagy in yeast. iScience, 2024. 27(6): p. 109810.
    35. Xia, X., et al., A pseudo-receiver domain in Atg32 is required for mitophagy. Autophagy, 2018. 14(9): p. 1620-1628.
    36. Okamoto, K., N. Kondo-Okamoto, and Y. Ohsumi, Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell, 2009. 17(1): p. 87-97.
    37. Qiu, L., et al., Structure and function of the PLAA/Ufd3-p97/Cdc48 complex. J Biol Chem, 2010. 285(1): p. 365-72.
    38. Hall, E.A., et al., PLAA Mutations Cause a Lethal Infantile Epileptic Encephalopathy by Disrupting Ubiquitin-Mediated Endolysosomal Degradation of Synaptic Proteins. Am J Hum Genet, 2017. 100(5): p. 706-724.
    39. Cohen, M.M., et al., Ubiquitin-proteasome-dependent degradation of a mitofusin, a critical regulator of mitochondrial fusion. Mol Biol Cell, 2008. 19(6): p. 2457-64.
    40. Tanaka, A., et al., Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J Cell Biol, 2010. 191(7): p. 1367-80.
    41. Zheng, Z., et al., Phospholipase A2-activating protein induces mitophagy through anti-apoptotic MCL1-mediated NLRX1 oligomerization. Biochim Biophys Acta Mol Cell Res, 2023. 1870(6): p. 119487.
    42. Martensson, C.U., et al., Mitochondrial protein translocation-associated degradation. Nature, 2019. 569(7758): p. 679-683.
    43. Weidberg, H. and A. Amon, MitoCPR-A surveillance pathway that protects mitochondria in response to protein import stress. Science, 2018. 360(6385).
    44. Yang, J., et al., Cryo-EM structure of hexameric yeast Lon protease (PIM1) highlights the importance of conserved structural elements. J Biol Chem, 2022. 298(3): p. 101694.
    45. Wagner, I., et al., Autocatalytic processing of the ATP-dependent PIM1 protease: crucial function of a pro-region for sorting to mitochondria. EMBO J, 1997. 16(24): p. 7317-25.
    46. Shin, M., et al., Structures of the human LONP1 protease reveal regulatory steps involved in protease activation. Nat Commun, 2021. 12(1): p. 3239.
    47. Major, T., et al., Proteomic analysis of mitochondrial protein turnover: identification of novel substrate proteins of the matrix protease pim1. Mol Cell Biol, 2006. 26(3): p. 762-76.
    48. Bayot, A., et al., Identification of novel oxidized protein substrates and physiological partners of the mitochondrial ATP-dependent Lon-like protease Pim1. J Biol Chem, 2010. 285(15): p. 11445-57.
    49. Bender, T., et al., The role of protein quality control in mitochondrial protein homeostasis under oxidative stress. Proteomics, 2010. 10(7): p. 1426-43.
    50. Rep, M., et al., Promotion of Mitochondrial Membrane Complex Assembly by a Proteolytically Inactive Yeast Lon. Science, 1996. 274(5284): p. 103-106.
    51. Suzuki, C.K., et al., Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respiration. Science, 1994. 264(5156): p. 273-6.
    52. Goke, A., et al., Mrx6 regulates mitochondrial DNA copy number in Saccharomyces cerevisiae by engaging the evolutionarily conserved Lon protease Pim1. Mol Biol Cell, 2020. 31(7): p. 527-545.
    53. Lee, Y.G., et al., LONP1 and ClpP cooperatively regulate mitochondrial proteostasis for cancer cell survival. Oncogenesis, 2021. 10(2): p. 18.
    54. Shin, C.S., et al., LONP1 and mtHSP70 cooperate to promote mitochondrial protein folding. Nat Commun, 2021. 12(1): p. 265.
    55. Matsushima, Y., et al., Mitochondrial Lon protease is a gatekeeper for proteins newly imported into the matrix. Commun Biol, 2021. 4(1): p. 974.
    56. Pinti, M., et al., Emerging role of Lon protease as a master regulator of mitochondrial functions. Biochim Biophys Acta, 2016. 1857(8): p. 1300-1306.
    57. Fei, X., et al., Structures of the ATP-fueled ClpXP proteolytic machine bound to protein substrate. Elife, 2020. 9.
    58. Fischer, F., J.D. Langer, and H.D. Osiewacz, Identification of potential mitochondrial CLPXP protease interactors and substrates suggests its central role in energy metabolism. Sci Rep, 2015. 5: p. 18375.
    59. Patron, M., H.G. Sprenger, and T. Langer, m-AAA proteases, mitochondrial calcium homeostasis and neurodegeneration. Cell Res, 2018. 28(3): p. 296-306.
    60. Puchades, C., et al., Structure of the mitochondrial inner membrane AAA+ protease YME1 gives insight into substrate processing. Science, 2017. 358(6363).
    61. Kaser, M., et al., Oma1, a novel membrane-bound metallopeptidase in mitochondria with activities overlapping with the m-AAA protease. J Biol Chem, 2003. 278(47): p. 46414-23.
    62. Stiburek, L., et al., YME1L controls the accumulation of respiratory chain subunits and is required for apoptotic resistance, cristae morphogenesis, and cell proliferation. Mol Biol Cell, 2012. 23(6): p. 1010-23.
    63. Maltecca, F., et al., Haploinsufficiency of AFG3L2, the gene responsible for spinocerebellar ataxia type 28, causes mitochondria-mediated Purkinje cell dark degeneration. J Neurosci, 2009. 29(29): p. 9244-54.
    64. Hammer, S.K. and J.L. Avalos, Uncovering the role of branched-chain amino acid transaminases in Saccharomyces cerevisiae isobutanol biosynthesis. Metab Eng, 2017. 44: p. 302-312.
    65. Hou, Y. and G. Wu, Nutritionally Essential Amino Acids. Adv Nutr, 2018. 9(6): p. 849-851.
    66. Park, J.H. and S.Y. Lee, Fermentative production of branched chain amino acids: a focus on metabolic engineering. Applied microbiology and biotechnology, 2010. 85: p. 491-506.
    67. Spence, J., et al., Cell cycle-regulated modification of the ribosome by a variant multiubiquitin chain. Cell, 2000. 102(1): p. 67-76.
    68. Gadaleta, M.C., et al., New vectors for epitope tagging and gene disruption in Schizosaccharomyces pombe. Biotechniques, 2013. 55(5): p. 257-63.
    69. Young, C.L., et al., Cassette series designed for live-cell imaging of proteins and high-resolution techniques in yeast. Yeast, 2012. 29(3-4): p. 119-36.
    70. Denison, C., et al., A proteomic strategy for gaining insights into protein sumoylation in yeast. Mol Cell Proteomics, 2005. 4(3): p. 246-54.
    71. Gietz, R.D. and R.H. Schiestl, High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc, 2007. 2(1): p. 31-4.
    72. Bähler, J., et al., Heterologous modules for efficient and versatile PCR-based gene targeting inSchizosaccharomyces pombe. Yeast, 1998. 14(10): p. 943-951.
    73. Stovicek, V., C. Holkenbrink, and I. Borodina, CRISPR/Cas system for yeast genome engineering: advances and applications. FEMS Yeast Res, 2017. 17(5).
    74. Reikofski, J. and B.Y. Tao, Polymerase chain reaction (PCR) techniques for site-directed mutagenesis. Biotechnol Adv, 1992. 10(4): p. 535-47.
    75. Ladner, C.L., et al., Visible fluorescent detection of proteins in polyacrylamide gels without staining. Anal Biochem, 2004. 326(1): p. 13-20.
    76. di Punzio, G., et al., A Yeast-Based Screening Unravels Potential Therapeutic Molecules for Mitochondrial Diseases Associated with Dominant ANT1 Mutations. Int J Mol Sci, 2021. 22(9).
    77. Hughes, A.L., et al., Selective sorting and destruction of mitochondrial membrane proteins in aged yeast. Elife, 2016. 5.
    78. Liao, P.C., E.J. Yang, and L.A. Pon, Live-Cell Imaging of Mitochondrial Redox State in Yeast Cells. STAR Protoc, 2020. 1(3): p. 100160.
    79. Ocampo, A., et al., Mitochondrial respiratory thresholds regulate yeast chronological life span and its extension by caloric restriction. Cell Metab, 2012. 16(1): p. 55-67.
    80. Gancedo, J.M., Yeast carbon catabolite repression. Microbiol Mol Biol Rev, 1998. 62(2): p. 334-61.
    81. Turcotte, B., et al., Transcriptional regulation of nonfermentable carbon utilization in budding yeast. FEMS Yeast Res, 2010. 10(1): p. 2-13.
    82. Guaragnella, N., et al., Yeast growth in raffinose results in resistance to acetic-acid induced programmed cell death mostly due to the activation of the mitochondrial retrograde pathway. Biochim Biophys Acta, 2013. 1833(12): p. 2765-2774.
    83. Johnson, E.S., et al., A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem, 1995. 270(29): p. 17442-56.
    84. Cocheme, H.M. and M.P. Murphy, Complex I is the major site of mitochondrial superoxide production by paraquat. J Biol Chem, 2008. 283(4): p. 1786-98.
    85. Metzger, M.B., et al., Differential sensitivity of the yeast Lon protease Pim1p to impaired mitochondrial respiration. J Biol Chem, 2023. 299(8): p. 104937.
    86. Whittaker, P.A., The petite mutation in yeast. Subcell Biochem, 1979. 6: p. 175-232.
    87. Wagner, I., et al., Molecular chaperones cooperate with PIM1 protease in the degradation of misfolded proteins in mitochondria. EMBO J, 1994. 13(21): p. 5135-45.
    88. Falco, S.C., K.S. Dumas, and K.J. Livak, Nucleotide sequence of the yeast ILV2 gene which encodes acetolactate synthase. Nucleic Acids Res, 1985. 13(11): p. 4011-27.
    89. Arndt, K. and G.R. Fink, GCN4 protein, a positive transcription factor in yeast, binds general control promoters at all 5' TGACTC 3' sequences. Proc Natl Acad Sci U S A, 1986. 83(22): p. 8516-20.
    90. Meimoun, A., et al., Degradation of the transcription factor Gcn4 requires the kinase Pho85 and the SCF(CDC4) ubiquitin-ligase complex. Mol Biol Cell, 2000. 11(3): p. 915-27.
    91. Howard, G.C. and W.P. Tansey, Interaction of Gcn4 with target gene chromatin is modulated by proteasome function. Mol Biol Cell, 2016. 27(17): p. 2735-41.
    92. Dasari, S. and R. Kolling, Role of mitochondrial processing peptidase and AAA proteases in processing of the yeast acetohydroxyacid synthase precursor. FEBS Open Bio, 2016. 6(7): p. 765-73.
    93. Ouyang, Y., et al., Phosphate starvation signaling increases mitochondrial membrane potential through respiration-independent mechanisms. Elife, 2024. 13.
    94. Rainey, R.N., et al., A new function in translocation for the mitochondrial i-AAA protease Yme1: import of polynucleotide phosphorylase into the intermembrane space. Mol Cell Biol, 2006. 26(22): p. 8488-97.
    95. Venkatesh, S., et al., Multitasking in the mitochondrion by the ATP-dependent Lon protease. Biochim Biophys Acta, 2012. 1823(1): p. 56-66.
    96. Takagi, H., Metabolic regulatory mechanisms and physiological roles of functional amino acids and their applications in yeast. Biosci Biotechnol Biochem, 2019. 83(8): p. 1449-1462.

    QR CODE