研究生: |
江英傑 Ingjye Jiang |
---|---|
論文名稱: |
陰道滴蟲內之Myb2蛋白質與ap65-1啟動子複合結構之核磁共振與生物物理特性研究 NMR and Biophysical studies of Trichomonas vaginalis Myb2 protein and ap65-1 promoter complex |
指導教授: |
張壽麟
Shou-Lin Chang 黃太煌 Tai-Huang Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 45 |
中文關鍵詞: | 陰道滴蟲 、核磁共振 |
外文關鍵詞: | Trichomonas vaginalis, NMR |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
陰道滴蟲為一厭氧且具鞭毛的寄生性單細胞動物,它會造成人類的陰道滴蟲病,此一疾病為世界最普遍的非病毒的性感染疾病。目前已發現黏附蛋白參與其中的細胞黏附作用是其引發疾病的關鍵。ap65-1基因是一各分子量為65道爾吞的蛋白,同時也是黏附蛋白(ap65)家族的一員。目前,再陰道滴蟲內的Myb1和Myb2被認為是調控ap65-1轉錄的新因子。MRE-1/MRE-2r和MRE-2f這兩段序列可以被Myb蛋白質所辨識進而調控ap65-1基因的轉錄機制。全長的Myb2蛋白質被發現可以與MRE-1和MRE-2f作用,而胺基酸序列從40到156的截斷蛋白Myb2x保有跟全長Myb2蛋白相似的DNA結合能力。我們利用生物物理的方法來探討截斷蛋白Myb2x與MRE-1和MRE-2f間的相互作用。再者,我們利用NMR的方法決定了Myb2x蛋白的結構和Myb2x蛋白與MRE-1和MRE-2f的複合結構,這些結構可以讓我們了解Myb2/DNA複合結構中的DNA辦識機制。
Trichomonas vaginalis (T. vaginalis), an anaerobic, parasitic flagellated protozoan, is the causative agent of human trichomoniasis, the most common nonviral sexually transmitted infections (STIs) in the world. Cytoadherence, a crucial step for T. vaginalis infection, has been shown to involve multiple surface adhesion proteins. The ap65-1 gene was a member of the ap65 (adhesion protein 65) multigene family encoding multiple homologous 65-kDa proteins. Recently, novel transcription factors, Myb1 and Myb2 proteins, were found to be involved in the transcriptional regulation of ap65-1 gene in T. vaginalis. MRE-1/MRE-2r (which overlap) and MRE-2f, which were found to be the multiple Myb recognition elements, regulate multifarious ap65-1 expression, inferring the involvement of Myb-like transcription factors in the transcription machinery of the parasite.
The full-length Myb2 protein encoded by the myb2 gene was found to interact with specific sequence contexts spanning MRE-1 and MRE-2f. The truncated Myb2 protein, Myb2x, spanning amino acid sequence 40-156, has been found to retain similar DNA binding affinity. We have investigated the interactions of Myb2x protein with MRE-2r and MRE-2f by biophysical methods. Moreover, we have determined the structures and dynamics of Myb2x protein, Myb2x-MRE-2r complex, and Myb2x-MRE-2f complex by NMR. The results allow us to pinpoint the molecular mechanism involved in Myb2/DNA interactions.
1. Global Prevalence and Incidence of Selected Curable Sexually Transmitted Infections. World Health Organization 2001.
2. Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL, Alsmark UC, Besteiro S et al: Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 2007, 315(5809):207-212.
3. Nielsen MH, Nielsen R: Electron microscopy of Trichomonas vaginalis Donne: interaction with vaginal epithelium in human trichomoniasis. Acta Pathol Microbiol Scand [B] 1975, 83(4):305-320.
4. Schwebke JR, Burgess D: Trichomoniasis. Clin Microbiol Rev 2004, 17(4):794-803, table of contents.
5. Moreno-Brito V, Yanez-Gomez C, Meza-Cervantez P, Avila-Gonzalez L, Rodriguez MA, Ortega-Lopez J, Gonzalez-Robles A, Arroyo R: A Trichomonas vaginalis 120 kDa protein with identity to hydrogenosome pyruvate:ferredoxin oxidoreductase is a surface adhesin induced by iron. Cell Microbiol 2005, 7(2):245-258.
6. Engbring JA, O'Brien JL, Alderete JF: Trichomonas vaginalis adhesin proteins display molecular mimicry to metabolic enzymes. Adv Exp Med Biol 1996, 408:207-223.
7. Arroyo R, Engbring J, Alderete JF: Molecular basis of host epithelial cell recognition by Trichomonas vaginalis. Mol Microbiol 1992, 6(7):853-862.
8. Mundodi V, Kucknoor AS, Klumpp DJ, Chang TH, Alderete JF: Silencing the ap65 gene reduces adherence to vaginal epithelial cells by Trichomonas vaginalis. Mol Microbiol 2004, 53(4):1099-1108.
9. Casta e Silva Filho F, de Souza W, Lopes JD: Presence of laminin-binding proteins in trichomonads and their role in adhesion. Proc Natl Acad Sci U S A 1988, 85(21):8042-8046.
10. Weston K: Myb proteins in life, death and differentiation. Curr Opin Genet Dev 1998, 8(1):76-81.
11. Lipsick JS: One billion years of Myb. Oncogene 1996, 13(2):223-235.
12. Howe KM, Reakes CF, Watson RJ: Characterization of the sequence-specific interaction of mouse c-myb protein with DNA. EMBO J 1990, 9(1):161-169.
13. Gabrielsen OS, Sentenac A, Fromageot P: Specific DNA binding by c-Myb:
42
evidence for a double helix-turn-helix-related motif. Science 1991, 253(5024):1140-1143.
14. Luscher B, Eisenman RN: New light on Myc and Myb. Part II. Myb. Genes Dev 1990, 4(12B):2235-2241.
15. Sakura H, Kanei-Ishii C, Nagase T, Nakagoshi H, Gonda TJ, Ishii S: Delineation of three functional domains of the transcriptional activator encoded by the c-myb protooncogene. Proc Natl Acad Sci U S A 1989, 86(15):5758-5762.
16. Biedenkapp H, Borgmeyer U, Sippel AE, Klempnauer KH: Viral myb oncogene encodes a sequence-specific DNA-binding activity. Nature 1988, 335(6193):835-837.
17. Weston K: Extension of the DNA binding consensus of the chicken c-Myb and v-Myb proteins. Nucleic Acids Res 1992, 20(12):3043-3049.
18. Tanikawa J, Yasukawa T, Enari M, Ogata K, Nishimura Y, Ishii S, Sarai A: Recognition of specific DNA sequences by the c-myb protooncogene product: role of three repeat units in the DNA-binding domain. Proc Natl Acad Sci U S A 1993, 90(20):9320-9324.
19. Howe KM, Watson RJ: Nucleotide preferences in sequence-specific recognition of DNA by c-myb protein. Nucleic Acids Res 1991, 19(14):3913-3919.
20. Ong SJ, Hsu HM, Liu HW, Chu CH, Tai JH: Multifarious transcriptional regulation of adhesion protein gene ap65-1 by a novel Myb1 protein in the protozoan parasite Trichomonas vaginalis. Eukaryotic Cell 2006, 5(2):391-399.
21. Ong SJ, Hsu HM, Liu HW, Chu CH, Tai JH: Activation of multifarious transcription of an adhesion protein ap65-1 gene by a novel Myb2 protein in the protozoan parasite Trichomonas vaginalis. Journal of Biological Chemistry 2007, 282(9):6716-6725.
22. Ong SJ, Huang SC, Liu HW, Tai JH: Involvement of multiple DNA elements in iron-inducible transcription of the ap65-1 gene in the protozoan parasite Trichomonas vaginalis. Mol Microbiol 2004, 52(6):1721-1730.
23. Sobel JD, Nagappan V, Nyirjesy P: Metronidazole-resistant vaginal trichomoniasis--an emerging problem. N Engl J Med 1999, 341(4):292-293.
24. Sobel JD, Nyirjesy P, Brown W: Tinidazole therapy for metronidazole-resistant vaginal trichomoniasis. Clin Infect Dis 2001, 33(8):1341-1346.
25. Wendel KA, Workowski KA: Trichomoniasis: challenges to appropriate management. Clin Infect Dis 2007, 44 Suppl 3:S123-129.
26. Guenthner PC, Secor WE, Dezzutti CS: Trichomonas vaginalis-induced epithelial monolayer disruption and human immunodeficiency virus type 1 (HIV-1) replication: implications for the sexual transmission of HIV-1. Infect Immun 2005, 73(7):4155-4160.
27. Rughooputh S, Greenwell P: Trichomonas vaginalis: paradigm of a successful sexually transmitted organism. Br J Biomed Sci 2005, 62(4):193-200.
28. Mason PR, Fiori PL, Cappuccinelli P, Rappelli P, Gregson S: Seroepidemiology of Trichomonas vaginalis in rural women in Zimbabwe and patterns of association with HIV infection. Epidemiol Infect 2005, 133(2):315-323.
29. Wang CC, McClelland RS, Reilly M, Overbaugh J, Emery SR, Mandaliya K, Chohan B, Ndinya-Achola J, Bwayo J, Kreiss JK: The effect of treatment of vaginal infections on shedding of human immunodeficiency virus type 1. J Infect Dis 2001, 183(7):1017-1022.
30. Ogata K, Morikawa S, Nakamura H, Sekikawa A, Inoue T, Kanai H, Sarai A, Ishii S, Nishimura Y: Solution structure of a specific DNA complex of the Myb DNA-binding domain with cooperative recognition helices. Cell 1994,
43
79(4):639-648.
31. Bodenhausen G, Ruben DJ: Natural abundance nitrogen-15 NMR by enhanced heteronuclear spectroscopy Chemical Physics Letters 1980, 69(1):185-189.
32. Ikura M, Kay LE, Bax A: A novel approach for sequential assignment of 1H, 13C, and 15N spectra of proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 1990, 29(19):4659-4667.
33. Yamazaki T, Lee W, Revington M, Mattiello DL, Dahlquist FW, Arrowsmith CH, Kay LE: An HNCA Pulse Scheme for the Backbone Assignment of 15N,13C,2H-Labeled Proteins: Application to a 37-kDa Trp Repressor-DNA Complex. J Am Chem Soc 1994, 116(14):6464 - 6465.
34. Yamazaki T, Lee W, Arrowsmith CH, Muhandiram DR, Kay LE: A Suite of Triple Resonance NMR Experiments for the Backbone Assignment of 15N, 13C, 2H Labeled Proteins with High Sensitivity. J Am Chem Soc 1994, 116(26):11655 - 11666.
35. Grzesiek S, Bax A: Improved 3D triple-resonance NMR techniques applied to a 31 kDa protein. Journal of Magnetic Resonance 1992, 96(2):432-440.
36. Grzesiek S, Bax A: Correlating backbone amide and side chain resonances in larger proteins by multiple relayed triple resonance NMR. J Am Chem Soc 1992, 114(16):6291 - 6293.
37. Grzesiek S, Bax A: Amino acid type determination in the sequential assignment procedure of uniformly 13C/15N-enriched proteins. J Biomol NMR 1993, 3(2):185-204.
38. Yang D, Kay LE: Improved lineshape and sensitivity in the HNCO-family of triple resonance experiments J Biomol NMR 1999, 14:273-276.
39. Muhandiram DR, Kay LE: Gradient-Enhanced Triple-Resonance Three-Dimensional NMR Experiments with Improved Sensitivity Journal of Magnetic Resonance, Series B 1994, 103(3):203 - 216.
40. Kay LE, Xu GY, Yamazaki T: Enhanced-Sensitivity Triple-Resonance Spectroscopy with Minimal H2O Saturation Journal of Magnetic Resonance, Series A 1994, 109(1):129-133.
41. Schleucher J, Sattler M, Griesinger C: Coherence Selection by Gradients without Signal Attenuation: Application to the Three-Dimensional HNCO Experiment. Angewandte Chemie International Edition in English 1993, 32(10):1489-1491.
42. Clubbb RT, Thanabala V, Wagner G: A constant-time three-dimensional triple-resonance pulse scheme to correlate intraresidue 1HN, 15N, and 13C′ chemical shifts in 15N---13C-labelled proteins Journal of Magnetic Resonance 1992, 97(1):213-217.
43. Engelke J, Rüterjans H: Sequential Protein Backbone Resonance Assignments Using an Improved 3D-HN(CA)CO Pulse Scheme. Journal of Magnetic Resonance, Series B 1995, 109(3):318-322.
44. Bazzo R, Cicero DO, Barbato G: A New Three-Dimensional Pulse Sequence for Correlating Intraresidue NH, N, and CO Chemical Shifts in13C,15N-Labeled Proteins. Journal of Magnetic Resonance, Series B 1996, 109(1):65-68.
45. Guntert P: Automated NMR structure calculation with CYANA. Methods Mol Biol 2004, 278:353-378.
46. Cornilescu G, Delaglio F, Bax A: Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 1999, 13(3):289-302.
44
45
47. Smith LJ, Sutcliffe MJ, Redfield C, Dobson CM: Analysis of phi and chi 1 torsion angles for hen lysozyme in solution from 1H NMR spin-spin coupling constants. Biochemistry 1991, 30(4):986-996.
48. Cavanagh J, Fairbrother, W. J., Palmer, A. G. I. and Skelton, N. J.: Protein NMR Spectroscopy: Principles and Practice 2nd edition: Academic Press.; 2007.
49. Wishart DS, Sykes BD: Chemical shifts as a tool for structure determination. Methods Enzymol 1994, 239:363-392.
50. Wishart DS, Sykes BD, Richards FM: The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 1992, 31(6):1647-1651.
51. Wishart DS, Sykes BD: The 13C chemical-shift index: a simple method for the identification of protein secondary structure using 13C chemical-shift data. J Biomol NMR 1994, 4(2):171-180.