研究生: |
林柏含 Lin, Po-Han |
---|---|
論文名稱: |
高濃度之胺類/醇/水混合溶液應用於二氧化碳捕捉 Carbon Dioxide Capture with Concnetrated Amine/Alcohol/Water Blends |
指導教授: |
汪上曉
Wong, Shan-Hill |
口試委員: |
談駿嵩
李夢輝 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 55 |
中文關鍵詞: | 二氧化碳捕捉 、對二氮己環 、二亞乙基三胺 、混合溶液 |
外文關鍵詞: | CO2 capture, piperazine, diethylenetriamine, blend |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
有鑑於日益加劇的溫室效應與全球暖化的現象,如何針對大型之二氧化碳排放源進行有效的二氧化碳捕捉成為當務之急。利用胺類吸收劑進行燃燒後二氧化碳捕捉已被視為具有高度捕捉效能與發展潛力的二氧化碳捕捉技術。在此技術中
,一個理想的吸收劑應當同時具備高的二氧化碳吸收與脫附效能,以及低再生能耗。本研究中,設計了一套簡易的二氧化碳吸收與脫附實驗以探究並比較五種不同吸收劑之二氧化碳捕捉效能與再生能耗,此五種吸收劑分別為乙醇胺(Monoethanolamine, MEA)水溶液、高濃度對二氮己環(Piperazine, PZ)/二亞乙基三胺(Diethylenetriamine, DETA)/水溶液、高濃度對二氮己環/二亞乙基三胺/二甘醇(Diethylene glycol, DEG)/水之混合溶液、高濃度對二氮己環/二亞乙基三胺/甲醇(Methanol, MeOH)/水之混合溶液,以及高濃度對二氮己環/二亞乙基三胺/甲醇溶液。其中,高濃度對二氮己環/二亞乙基三胺/甲醇/水之混合溶液同時具備高二氧化碳吸收效能、高二氧化碳脫附效能,與低再生能耗之特性。此外,此一吸收劑即使於低溫條件(10-30oC)下亦無對二氮己環之結晶產生,且在整個二氧化碳吸收與脫附過程中並無非水溶性沉澱物產生於富二氧化碳溶液中,故無固體沉澱物堵塞於二氧化碳捕捉程序或衍生固體廢棄物處理之問題。因此,此一新型之高濃度對二氮己環/二亞乙基三胺/甲醇/水混合溶液可被視為極具發展潛力的二氧化碳吸收劑。
Post-combustion carbon dioxide (CO2) capture using amine-based absorbents has been considered as the most promising technology to effectively capture CO2 from coal-fired power plants. In this technology, an ideal absorbent should have both high absorption/desorption efficiency and low regeneration energy penalty. In this study, a set of simplified experiments was devised to evaluate the overall capture performances of five absorbents, including 30wt% monoethanolamine (MEA) solution, piperazine/diethylenetriamine/water (PZ/DETA/H2O) solution, piperazine/diethylenetriamine/diethylene glycol/water (PZ/DETA/DEG/H2O) blend, piperazine/diethylenetriamine/methanol/water (PZ/DETA/MeOH/H2O) blend, and piperazine/diethylenetriamine/methanol (PZ/DETA/MeOH) solution. Among the five absorbents, the novel PZ/DETA/MeOH/H2O blend achieved high absorption efficiency, high desorption efficiency, and low regeneration energy penalty. In addition, this blend did not suffer the problems of PZ crystal formation in absorbents at low temperature (10-30oC) and precipitation in CO2-rich solution. Therefore, this novel PZ/DETA/MeOH/H2O blend can be considered as a potential candidate for CO2 capture reagent.
1. Smith, I. M., CO2 and climatic-change: An overview of the science. Energy Conv. Manag. 1993, 34, (9-11), pp 729-735.
2. IPCC, Special report on carbon capture and storage Working group III of the International Panel on Climate Change: Cambridge, UK, New York., 2005.
3. Figueroa, J. D.; Fout, T.; Plasynski, S.; McIlvried, H.; Srivastava, R. D., Advances in CO2 capture technology—The U.S. Department of Energy's Carbon Sequestration Program Int. J. Greenh. Gas Control 2008, 2, (1), pp 9-20.
4. Olajire, A. A., CO2 capture and separation technologies for end-of-pipe applications - A review. Energy 2010, 35, (6), pp 2610-2628.
5. Pires, J. C. M.; Martins, F. G.; Alvim-Ferraz, M. C. M.; Simoes, M., Recent developments on carbon capture and storage: An overview. Chem. Eng. Res. Des. 2011, 89, (9A), pp 1446-1460.
6. Rochelle, G. T., Amine scrubbing for CO2 capture. Science 2009, 325, (5948), pp 1652-1654.
7. Bottoms, R. R. The Process of separating acid gases. U. S. Patent 1783901, 1930.
8. Chakma, A., CO2 capture processes - Opportunities for improved energy efficiencies. Energy Conv. Manag. 1997, 38, pp S51-S56.
9. Svendsen, H. F.; Hessen, E. T.; Mejdell, T., Carbon dioxide capture by absorption, challenges and possibilities. Chem. Eng. J. 2011, 171, (3), pp 718-724.
10. Cullinane, J. T.; Rochelle, G. T., Kinetics of carbon dioxide absorption into aqueous potassium carbonate and piperazine. Ind. Eng. Chem. Res. 2006, 45, (8), pp 2531-2545.
11. Liu, J. Z.; Wang, S. J.; Zhao, B.; Qi, G. J.; Chen, C. H., Study on mass transfer and kinetics of CO2 absorption into aqueous ammonia and piperazine blended solutions. Chem. Eng. Sci. 2012, 75, pp 298-308.
12. Seo, D. J.; Hong, W. H., Effect of piperazine on the kinetics of carbon dioxide with aqueous solutions of 2-amino-2-methyl-1-propanol. Ind. Eng. Chem. Res. 2000, 39, (6), pp 2062-2067.
13. Sun, W. C.; Yong, C. B.; Li, M. H., Kinetics of the absorption of carbon dioxide into mixed aqueous solutions of 2-amino-2-methyl-l-propanol and piperazine. Chem. Eng. Sci. 2005, 60, (2), pp 503-516.
14. Xu, G. W.; Zhang, C. F.; Qin, S. J.; Wang, Y. W., Kinetics study on absorption of carbon-dioxide into solutions of activated methyldiethanolamine Ind. Eng. Chem. Res. 1992, 31, (3), pp 921-927.
15. Samanta, A.; Bandyopadhyay, S. S., Absorption of carbon dioxide into piperazine activated aqueous N-methyldiethanolamine. Chem. Eng. J. 2011, 171, (3), pp 734-741.
16. Bishnoi, S.; Rochelle, G. T., Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility. Chem. Eng. Sci. 2000, 55, (22), pp 5531-5543.
17. Freeman, S. A.; Dugas, R.; Van Wagener, D. H.; Nguyen, T.; Rochelle, G. T., Carbon dioxide capture with concentrated, aqueous piperazine. Int. J. Greenh. Gas Control 2010, 4, (2), pp 119-124.
18. Chen, X.; Rochelle, G. T., Aqueous piperazine derivatives for CO2 capture: Accurate screening by a wetted wall column. Chem. Eng. Res. Des. 2011, 89, (9A), pp 1693-1710.
19. Freeman, S. A.; Rochelle, G. T., Thermal degradation of aqueous piperazine for CO2 capture. 1. Effect of process conditions and comparison of thermal stability of CO2 capture amines. Ind. Eng. Chem. Res. 2012, 51, (22), pp 7719-7725.
20. Freeman, S. A.; Rochelle, G. T., Thermal degradation of aqueous piperazine for CO2 capture: 2. Product types and generation rates. Ind. Eng. Chem. Res. 2012, 51, (22), pp 7726-7735.
21. Hartono, A.; Svendsen, H. F., Kinetics reaction of primary and secondary amine group in aqueous solution of diethylenetriamine (DETA) with carbon dioxide. In Greenhouse Gas Control Technologies 9, Gale, J.; Herzog, H.; Braitsch, J., Eds. Elsevier Science Bv: Amsterdam, 2009; Vol. 1, pp 853-859.
22. Hartono, A.; da Silva, E. F.; Svendsen, H. F., Kinetics of carbon dioxide absorption in aqueous solution of diethylenetriamine (DETA). Chem. Eng. Sci. 2009, 64, (14), pp 3205-3213.
23. Hartono, A.; Hoff, K. A.; Mejdell, T.; Svendsen, H. F., Solubility of Carbon Dioxide in Aqueous 2.5 M of Diethylenetriamine (DETA) Solution. In 10th International Conference on Greenhouse Gas Control Technologies, Gale, J.; Hendriks, C.; Turkenberg, W., Eds. Elsevier Science Bv: Amsterdam, 2011; Vol. 4, pp 179-186.
24. Zhu, D. C.; Fang, M. X.; Lv, Z.; Wang, Z.; Luo, Z. Y., Selection of blended solvents for CO2 absorption from coal-fired flue gas. Part 1: Monoethanolamine (MEA)-based solvents. Energy Fuels 2012, 26, (1), pp 147-153.
25. Lin, C. C.; Liu, W. T.; Tan, C. S., Removal of carbon dioxide by absorption in a rotating packed bed. Ind. Eng. Chem. Res. 2003, 42, (11), pp 2381-2386.
26. Tan, C. S.; Chen, J. E., Absorption of carbon dioxide with piperazine and its mixtures in a rotating packed bed. Sep. Purif. Technol. 2006, 49, (2), pp 174-180.
27. Jassim, M. S.; Rochelle, G.; Eimer, D.; Ramshaw, C., Carbon dioxide absorption and desorption in aqueous monoethanolamine solutions in a rotating packed bed. Ind. Eng. Chem. Res. 2007, 46, (9), pp 2823-2833.
28. Yu, C. H.; Cheng, H. H.; Tan, C. S., CO2 capture by alkanolamine solutions containing diethylenetriamine and piperazine in a rotating packed bed. Int. J. Greenh. Gas Control 2012, 9, pp 136-147.
29. Chakma, A., An energy efficient mixed solvent for the separation of CO2. Energy Conv. Manag. 1995, 36, (6-9), pp 427-430.
30. Desideri, U.; Paolucci, A., Performance modelling of a carbon dioxide removal system for power plants. Energy Conv. Manag. 1999, 40, (18), pp 1899-1915.
31. Su, W. C. Application of the deep eutectic solvent in CO2 capture. PhD. thesis, National Tsing Hua University, 2009.
32. Jessop, P. G.; Heldebrant, D. J.; Li, X. W.; Eckert, C. A.; Liotta, C. L., Green chemistry - Reversible nonpolar-to-polar solvent. Nature 2005, 436, (7054), pp 1102-1102.
33. Liu, Y. X.; Jessop, P. G.; Cunningham, M.; Eckert, C. A.; Liotta, C. L., Switchable surfactants. Science 2006, 313, (5789), pp 958-960.
34. Phan, L.; Chiu, D.; Heldebrant, D. J.; Huttenhower, H.; John, E.; Li, X. W.; Pollet, P.; Wang, R. Y.; Eckert, C. A.; Liotta, C. L.; Jessop, P. G., Switchable solvents consisting of amidine/alcohol or guanidine/alcohol mixtures. Ind. Eng. Chem. Res. 2008, 47, (3), pp 539-545.
35. Heldebrant, D. J.; Yonker, C. R.; Jessop, P. G.; Phan, L., Organic liquid CO2 capture agents with high gravimetric CO2 capacity. Energy Environ. Sci. 2008, 1, (4), pp 487-493.
36. Heldebrant, D. J.; Yonker, C. R.; Jessop, P. G.; Phan, L., CO2-binding organic liquids (CO2BOLs) for post-combustion CO2 capture. In Greenhouse Gas Control Technologies 9, Gale, J.; Herzog, H.; Braitsch, J., Eds. Elsevier Science Bv: Amsterdam, 2009; Vol. 1, pp 1187-1195.
37. Lail, M.; Coleman, L.; Jamal, A.; Lesemann, M.; Gupta, R.; Riemann, C.; Sugavanam, K.; Spengeman, T., Novel non-aqueous CO2 solvents and capture process with substantially reduced energy penalties. In the 1st Post-Combustion Capture Conference, Abu Dhabi, 2011.
38. Lail, M.; Amato, K.; Akunuri, N.; Lesemann, M.; Coleman, L.; Rigby, S.; Bartling, K.; Spengeman, T.; Katz, T., Non-aqueous solvents for post-combustion CO2 capture. In the 2nd Post-Combustion Capture Conference, Bergen, Norway, 2012.
39. Chen, C. H. Application of concentrated alkanolamine to CO2 capture in a rotating packed bed. Master's thesis, National Tsing Hua University, 2012.
40. Smith, C. A.; Corripio, A. B., Principles and Practices of Automatic Process Control. 3rd ed.; WILEY: 2006.
41. Davidson, J. G., The glycol ethers and their use in the lacquer industry. Industrial and Engineering Chemistry 1926, 18, pp 669-675.
42. Smith, J. M.; Ness, H. C. V.; Abbot, M. M., Introduction to Chemical Engineering Thermodynamics. 7th ed.; McGraw-Hill: 2004.
43. Maham, Y.; Hepler, L. G.; Mather, A. E.; Hakin, A. W.; Marriott, R. A., Molar heat capacities of alkanolamines from 299.1 to 397.8 K - Group additivity and molecular connectivity analyses. J. Chem. Soc.-Faraday Trans. 1997, 93, (9), pp 1747-1750.
44. Steele, W. V.; Chirico, R. D.; Knipmeyer, S. E.; Nguyen, A.; Smith, N. K., Thermodynamic properties and ideal-gas enthalpies of formation for dicyclohexyl sulfide, diethylenetriamine, di-n-octyl sulfide, dimethyl carbonate, piperazine, hexachloroprop-1-ene, tetrakis(dimethylamino)ethylene, N,N'-bis-(2-hydroxyethyl)ethylenediamine, and 1,2,4-triazolo 1,5-a pyrimidine. J. Chem. Eng. Data 1997, 42, (6), pp 1037-1052.