研究生: |
賴彥廷 |
---|---|
論文名稱: |
以(Ba0.5Sr0.5)0.9Sm0.1Co0.8Fe0.2O3-δ為SOFC陰極材料之研究 Study of (Ba0.5Sr0.5)0.9Sm0.1Co0.8Fe0.2O3-δ as SOFC Cathode Material |
指導教授: | 黃大仁 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 67 |
中文關鍵詞: | 固態氧化物燃料電池 、陰極材料 、BSSCCF 、一氧化氮還原 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以鈣鈦礦結構導氣離子材料(Ba0.5Sr0.5)0.9Sm0.1Co0.8Fe0.2O3-δ (BSSCF),搭配具有導氧離子性質的材料氧化釓參雜氧化鈰 (Ce0.9Gd0.1O2-x, Gadolinia doped Ceria,GDC )、對氮氧化物還原有催化助益的銅離子作為SOFC陰極材料,分別以氫氣、一氧化氮作為陰極氣體,進行電池性能、交流阻抗分析( AC Impedance ) 等電性分析,希望能藉此驗證以固態氧化物燃料電池處理一氧化氮是否可行。
實驗發現以單純BSSCF為陰極材料於不同操作溫度下進行單電池發電,以20%氧氣為陰極氣體情況下,電池之maximum power density可達4.79 mW/cm2 (800℃)、6.09 mW/cm2 (850℃)、8.65 mW/cm2 (900℃)、11.33 mW/cm2 (950℃)。若將BSSCF與不同比例GDC混合,發現GDC添加量越多電池效能越佳,於800℃下操作,使用20%氧氣為陰極氣體時,BSSCF添加50wt%GDC為陰極材料之電池maximum power density 可達8.65 mW/cm2;以BSSCF 添加70wt%GDC為陰極材料則可達16.28 mW/cm2。若改用6%一氧化氮為陰極氣體,於800℃下操作時,BSSCF混合GDC為陰極材料效果相當差,BSSCF添加50wt%GDC maximum power density 僅有0.031mW/cm2;BSSCF 添加70wt%GDC僅有0.1017mW/cm2。若於BSSCF結構中添加銅離子構成BSSCCF 712[(Ba0.5Sr0.5)0.9Sm0.1Co0.7Cu0.1Fe0.2O3-δ] (銅離子取代鈷離子)、BSSCCF 811 [(Ba0.5Sr0.5)0.9Sm0.1Co0.8Cu0.1Fe0.1O3-δ] (銅離子取代鐵離子),則電池效能可以提升至0.8 mW/cm2 (BSSCCF 712)、1.66 mW/cm2(BSSCCF 811),顯示銅離子對於一氧化氮還原催化活性之提升有所助益。
This Study used (Ba0.5Sr0.5)0.9Sm0.1Co0.8Fe0.2O3-δ (BSSCF) as major cathode material, combined with Gadolinia doped Ceria and copper ion for SOFC. For different cathode material, we provide 20% O2 and 6% NO from cathode side to conduct single cell SOFC test and try to show that NO can be used at cathode side of SOFC.
Experiment shows that SOFC single cell with only BSSCF cathode under different temperature, applying 20% O2 from cathode side could provide maximum power density 4.79 mW/cm2 (800℃)、6.09 mW/cm2 (850℃)、8.65 mW/cm2 (900℃)、11.33 mW/cm2 (950℃).
Combined BSSCF with different wt% of Gadolinia Doped Ceria (GDC) can found that the more wt% GDC added, the better SOFC single performance provided. BSSCF with 50wt%GDC as cathode could provide maximum power density 8.65 mW/cm2, while BSSCF with 70wt%GDC could reach 16.28 mW/cm2, under 800℃ with 20% O2 applied from cathode side.
When applying 6% NO from cathode side, BSSCF with GDC could only provide limited performance. If we added Copper into BSSCF perovskite structure to form BSSCCF 712 or BSSCCF 811, cell performance could raise remarkably. Maximum power density can reach 0.8 mW/cm2 (BSSCCF 712), and 1.66 mW/cm2(BSSCCF811), showing that copper ion is really helpful for NO redution.
1. W. R. Grove, “On Voltavic Series and the Combination of Gases by Platium”, Philosophical Magazine, 14 (1839) 127.
2. 鄭耀宗, 徐耀昇, “燃料電池技術進展的現況分析”, 燃料電池論文集, 工業技術研究院能源與資源研究所, 1999年
3. 衣寶廉, “燃料電池-原理與應用”, 五南圖書出版公司, 2005年3月初版
4. 黃鎮江, “燃料電池”, 全華科技圖書股份有限公司, 2005年3月二版
5. 黃璟瓔, “以Co-doped Y1-xSrxMnO3 為固態氧化物燃料電池陰極材料之研究”, 國立清華大學化工系 碩士論文, 民國90年
6. 余河潔, “以鍶摻雜銅酸鑭做為中溫固態氧化物燃料電池陰極材料之研究”, 國立成功大學材料科學及工程學系 博士論文, 民國94年
7. J. Larminie, A. Dicks, “Fuel Cell System Explained”, 1th Edition, JOHN WILEY & SONS Inc., England, (2000).
8. J. B. Goodenough, “Oxide-Ion Electrolytes”, Annual Review of Materials Research, 33 (2003) 91-128.
9. K. Kordesch, G. Simader, “Fuel Cells and Their Applications”, Wiley-VCH, New York, (1996).
10. Hammou, J. Guindet, “Solid Oxide Fuel Cell”, CRC Handbook of Solid State Electrochemistry, (1997).
11. J. B. Goodenough, “Ceramic solid electrolytes”, Solid State Ionics, 94, (1997) 17-25.
12. J. B. Goodenough, “Oxide-ion conductors by design”, Nature, 404 (2000), 821-823.
13. H. Inaba, H. Tagawa, “Review Ceria-based solid electrolytes”, Solid State Ionics, 83 (1996) 1-16.
14. T. Ishihara, H. Matsuda, Y. Takita, “Doped LaGaO3 Perovskite type oxide as a new oxide ionic conductor”, Journal of the American Chemical Society, 116 (1994) 3801-3803.
15. J. Mizusaki, H. Tagawa, Y. Miyaki, S. Yamauchi, K. Hirano, “Kinetics of The Electrode Reaction at the CO-CO2, Porous Pt/Stabilized Zirconia Interface”, Solid State Ionics, 53 (1992) 126-134.
16. W. Z. Zhu, S. C. Deevi, “A review on the status of anode materials for solid oxide fuel cells”, Materials Science and Engineering, A362 (2003) 228-239.
17. S. P. Jiang, S. H. Chan, “A review of anode materials development in solid oxide fuel cells”, Journal of Materials Science, 39 (2004) 4405-4439.
18. A. Ringuede, J. A. Labrincha, J. R. Frade, “A combustion synthesis method to obtain alternative cermet materials for SOFC anodes”, Solid State Ionics, 141-142 (2001) 549-557.
19. D. Simwonis, F. Tietz, D. Stover, “Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells”, Solid State Ionics, 132 (2000) 241-251.
20. F. Chen, M. Liu, “Study of transition metal oxide doped LaGaO3 as electrode materials for LSGM-based solid oxide fuel cells”, Journal of Solid State Electrochem, 3 (1998) 7-14.
21. Q. Fu, X. Xu, D. Peng, X. Liu, G. Meng, “Preparation and electrochemical characterization of Sr- and Mn-doped LaGaO3 as anode materials for LSGM-based SOFCs”, Journal of Materials Science, 38 (2003) 2901-2906.
22. N. Maffei, G. de Silveira, “Interfacial layers in tape cast anode-supported doped lanthanum gallate SOFC elements”, Solid State Ionics, 159 (2003) 209- 216.
23. S. Tao, J. T. S. Irvine, “A redox-stable efficient anode for solid-oxide fuel cells”, Nature Materials, 2 (2003) 320-323.
24. J. Sfeir, “LaCrO3-based anodes: stability considerations”, Journal of Power Sources, 118 (2003) 276-285.
25. K. Mori, Hee Y. Lee, John B. Goodenough, “Sr- and Ni- doped LaCoO3 and LaFeO3 perovskite: new cathode materials for solid-oxide fuel cells”, Journal of the Electrochemical Society, 145 (1998) 3220-3227.
26. N. Robertson and J.N. Michaels, “Oxygen exchange on platinum electrodes in zirconia cells; Location of electrochemical reaction sites”, Journal of the Electrochemical Society, 137 (1990) 129-135.
27. 黃瑞銘, “直接甲烷固態氧化物燃料電池之積碳與去積碳研究”, 清華大學化工所碩士論文, 民國九十五年。
28. 陳冠蓉, “以Ni-SDC為陽極材料之固態氧化物燃料電池研究”, 清華大學化工所 碩士論文,民國九十四年。
29. Andre Weber, Ellen Ivers-Tiffee, “Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications”, Journal of Power Sources, 127 (2004) 273-283.
30. 許夢舫, “以鈣鈦礦(Perovskite)結構之材料製作固態氧化物燃料電池(SOFC)”, 國立清華大學材料科學與工程學系 碩士論文, 民國94年
31. J. B. Goodenough, J. S. Zhou, “Localized to itinerant electronic transition-metal oxides with the perovskite structure”, Chemistry of Materials, 10 (1998) 2980-2993.
32. Y. Takeda, R. Kanno, M. Noda, Y. Tomida, and O. Yamamoto, “Cathodic polarization phenomena of perovskite oxide electrodes with stabilized zirconia”, Journal of the Electrochemical Society, 134 (1987) 2656-2661.
33. V. Dusastre, J.A. Kilner, “Optimisation of composite cathodes for intermediate”, Solid State Ionics, 126 (1999) 163-174.
34. Z.P. Shao, S.M. Halle, “A high-performance cathode for the next generation of solid-oxide fuel cells”, Nature, 431 (2004) 170-173.
35. L. Tan, X.H. Gu, L. Yang, L.X. Zhang, C.Q.Wang, “Influence of sintering condition on crystal structure, microstructure, and oxygen permeability of perovskite-related type Ba0.8Sr0.2Co0.8Fe0.2O3−δ membranes”, Separation and Purification Technology, 32 (2003) 307-312.
36. S. Li et al., “Electrochemical performance of (Ba0.5Sr0.5)0.9Sm0.1Co0.8Fe0.2O3−δ as an intermediate temperature solid oxide fuel cell cathode”, Journal of Power Sources 165 (2007) 97-101.
37. S. Li et al., “A study of (Ba0.5Sr0.5)1-xSmxCo0.8Fe0.2O3−δ as a cathode material for IT-SOFCs”, Journal of Alloys and Compounds, 426 (2006) 408-414.
38. Changrong Xia, Meilin Liu, “Microstructures, conductivities, and electrochemical properties of Ce0.9Gd0.1O2 and GDC–Ni anodes for low-temperature SOFCs”, Solid State Ionics 152 (2002) 423-430.