簡易檢索 / 詳目顯示

研究生: 章筑嫻
論文名稱: 半線性橢圓特徵植問題的分歧問題探討
Numerical Investigation for the Bifurcation Problems of Semi-linear Elliptic Eigenvalue Problems
指導教授: 簡國清
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2006
畢業學年度: 95
語文別: 中文
論文頁數: 61
中文關鍵詞: 分歧點中央有限差分法切線預測法牛頓迭代法隱函數定理割線預測法虛擬弧長延拓法
外文關鍵詞: Bifurcation point, Central difference method, Tangent predictor, Newton iterative method, Implicit function theorem, Secant predictor, Pseudo-arclength continuation method
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文將利用中央有限差分法、切線預測法、牛頓迭代法、隱函數定理、割線預測法、有限維度 Liapunov-Schmidt 降階法及虛擬弧長延拓法等數值方法,來獲得半線性橢圓特徵方程組之解路徑。其中,虛擬弧長延拓法能順利通過轉彎點、跳過分歧點,延拓出模型的解路徑來。本文之主要目的在於探討兩個半線性橢圓方程組多重解的存在,並歸納半線性橢圓特徵值問題解的特性。


    In this paper, we use the central difference method, tangent predictor, Newton iterative method, implicit function theorem, Secant Predictor , finite dimensional Liapunov-Schmidt reduction method and pseudo-arclength continuation method to obtain the solution path of the semi-linear elliptic eigenvalue problems. The pseudo-arclength continuation can pass through turning points and bifurcation points to continue all solution. We investigate the existence of multiple solutions of two semi-linear systems of elliptic eigenvalue equations and analyze the behavior of branches of the solution path.

    目 錄 第一章 緒論 1 第二章 分歧理論與虛擬弧長延拓法 3 2.1 分歧問題 3 2.2 分歧理論 5 2.3 局部延拓法 7 2.4 虛擬弧長延拓法 9 第三章 探討之問題 12 3.1 中央有限差分法 13 3.2 分歧點的求法 15 3.3 選取過分歧點的解分支之延拓方向 18 3.4 解分支的延拓 25 3.5 演算法 28 第四章 數值實驗 31 4.1 實驗4.1 32 4.2 實驗4.2 43 第五章 結論 56 參考文獻

    參考文獻
    [1] Böhmer, K. E., and Mei Z., Mode Interactions of an Elliptic System on the Square, International Series of Numerical Mathematic, Vol. 104, , Verlag Basel, (1992).
    [2] Chien C. S., Mei Z., and Shen C. L., Numerical Continuation at Double Bifurcation Points of a Reaction Diffusion Problem, International Journal of Bifurcation and Chaos, Vol. 8, No.1, 117-139, (1997).
    [3] Crandall, M. G. and Rabinowitz, P. H., Bifurcation from simple eigenvalue, J. Funct. Anal., 8, pp.321-340,(1971).
    [4] Crandall, M. G., An Introduction to Constructive Aspects of Bifurcation Theorem, edited by P. H. Rabinowitz, Academic Press, pp. 1-35,(1977).
    [5] Crandall, M. G. and Rabinowitz, P. H., Mathematical Theory of Bifurcation, Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C. and Bessis, D., NATO Advanced Study Institute Series,(1979).
    [6] Jepson, A. D. and Spence, A., Numerical Methods for Bifurcation Problems, State of the Art in Numeriacl Analysis, edit bu A. Iserles, MJD Powell,(1987).
    [7] Keller, H. B. and Langford, W.F., Iterations, perturbations and multiplicities for nonlinear bifurcation problems,Arch. Rational Mech.Anal.,48, 83-108(1972).
    [8] Keller, H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory, Edited by Rabinowitz, P. H., Academic Press, pp. 359-384, (1977).
    [9] Keller, H. B., in “Recent Advances in Numerical Analysis”, Ed. by C. de Boor and G. H. Golub, Academic Press, New York, p.73, (1978).
    [10] Keller, H. B. Lectures on Numerical Methods in Bifurcation Problems,TATA Institute of Fundamental Research , Springer-Verlag, (1987).
    [11] Kubiček, M. and Marek, M., Computational Methods in Bifurcation Theory and Dissipative Structures, Springer-Verlag, New York, (1983).
    [12] McKenna P. j. and Walter W., On the Mulitiplicity of the Solution Set of Some Nonlinear Boundary Value Problems. Nonlinear Analysis 8, pp.893-907, (1984).
    [13] Reiss, E. L., Bauer, L. and Keller, H. B., Mutiple eigenvalues lead to secondary bifurcation, SIAM J. Appl. Math. 17, 101-122, (1975).
    [14] Rheinboldt, W. C., Numerical Analysis of Parameterized Nonlinear Equations, Wiley(New York).
    [15]雷晉干和馬亞南著,分歧問題的逼近理論與數值方法,武漢大學,中國,西元一九九二年八月。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE