簡易檢索 / 詳目顯示

研究生: 張培倫
Chang, Pei-Lun
論文名稱: 利用彩色時間性裴氏圖建構12吋晶圓廠之混合式之物料運輸系統之模擬模式
Using CTPN to Model a Hybrid Material Handling System in a 300 mm Fab
指導教授: 劉志明
Liu, Chih-Ming
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 77
中文關鍵詞: 自動物料搬運系統彩色時間性裴氏圖三階段離散事件模擬反應曲面法OHT與人員配置
外文關鍵詞: automated material handling system, colored timed Petri net, three-phase discrete event simulation, response surface method, allocation of OHTs and operators
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究在探討12吋晶圓廠內的物料運輸問題。由於12吋晶圓重量造成人工搬運上的困難,因此自動物料搬運系統(AMHS)在12吋晶圓廠中被大量使用。但在實務的12吋晶圓廠的Intrabay系統中,仍然存在一些特別狀況,需要以人力去搬運以達到較好的生產績效。在現階段Intrabay系統的搬運100%自動化是很難達成的。因此本研究將探討混合式的搬運系統(HTS)模式,同時考慮以人力搭配OHT (Overhead Hoist Transport) 進行搬運。
    在研究方法上,我們利用彩色時間性裴氏圖(CTPN)去建構混合式的搬運系統 (HTS) 模式。混合式之搬運系統模式可以適用於半導體不同區域的Intrabay系統,基於此目的該模式必須為一個具一般化的模型。在建構彩色時間性裴氏圖的模式上,我們將模式結構跟模式組態分離,以避免因為問題組態而影響到模式的結構。混合式之搬運系統模式主要包含兩個子系統,一為搬運系統,另一個為生產系統。在建構搬運系統上必須同時考慮人力與OHT的不同的搬運行為,以及搬運時所會面臨的狀況,而生產系統上也必須考慮半導體不同區域內的生產行為。其次將這兩個子系統進行連結,以CTPN為基的混合式之搬運系統轉換成三階段模擬(Three-Phase Discrete Event Simulation)進行模擬分析。模擬不同的情境後,最後利用反應曲面法求得在最佳的績效下,人員與OHT的最適配置比率。
    本研究的實驗結果可以用來當作半導體在人力與OHT的搭配的決策參考依據。以CTPN建構的模型具有一般性,因此可以作為規劃不同區域內人力與OHT的最適配置。


    This study investigates the transportation problems in the semiconductor fabrication. Due to the weight and size of the 300 mm wafer lot, it is difficult to transport lots by operators, and therefore the automated material handling system (AMHS) is widely employed. Nevertheless, in practice, there are several special situations where operators perform better than AMHS. To date, fully-automated transportation for an intrabay is still difficult to achieve, so that generally the hybrid transportation system (HTS) is adopted. Hence, this study focuses on the optimal design of the HTS that incorporate overhead hoist transports (OHTs) with operators.
    The proposed methodology exploits the colored timed Petri nets (CTPN) to model the HTS, which can be applied to diverse areas in the intrabay system of semiconductor fabrication, and the modeling tool for analyzing the HTS has to be generalized. The model structure is separated from the model configuration in modeling the HTS, and thus prevents the need to modify a model structure due to a different problem configuration. There are two sub-systems, the transportation system and the production system in the HTS. In the construction of the transportation system, one needs to consider simultaneously the different behavior of operators and OHTs, and different situations in the transportation.
    Also one needs to consider the different production behavior in the different fabrication areas. Then, these two sub-systems are combined and the CTPN-based hybrid transport system is transformed into a three-phase discrete event simulation system for further analysis. After simulating different scenarios, the response surface method (RSM) is used to obtain the optimal allocation of OHTs and operators.
    The results of this study can provide the needed information to support the decision for allocation of OHTs and operators. Besides, the CTPN-based HTS simulator is a general model which can be applied to diverse areas of semiconductor fabrication.

    Table of Contents i List of Figures ii List of Tables iii Chapter 1 Introduction 1 1.1 Background, Motivation, and Significance 1 1.2 Research Aims 2 1.3 Research Scope 3 1.4 Overview of This Thesis 3 Chapter 2 Literature Reviews 5 2.1 Petri Nets (PN) 5 2.1.1 Evolution of Petri Nets 5 2.1.2 Modeling, Scheduling, Analysis, and Simulation of Petri Nets 6 2.2 Colored Timed Petri Nets (CTPN) 9 2.3 Three-Phase Event Logic Transformation for CTPN 13 2.4 Automated Material Handling System (AMHS) 17 2.4.1 Introduction of AMHS in 300 mm Fab 17 2.4.2 Related Studies of AMHS 19 Chapter 3 Development of a Generalized CTPN-based HTS Simulator 22 3.1 The Hybrid Transportation System (HTS) 22 3.1.1 The Transportation System of the HTS 23 3.1.2 The Production System of the HTS 31 3.2 A Generalized CTPN-Based Model for the HTS 32 3.2.1 Preliminary Modeling of CTPN Model 32 3.2.2 Definitions of Places, Transitions, and Tokens 37 3.3 Three-Phase Logic transformation of the CTPN 43 3.4 Numerical Illustration 48 3.5 Implementation of the CTPN-based HTS Simulator 53 3.6 Chapter Summary 54 Chapter 4 Simulation and Performance Analysis of the HTS 56 4.1 Experimental Design 56 4.2 Results and Discussions 57 4.3 Chapter Summary 64 Chapter 5 Conclusions and Future Research 65 References 67

    1.Breymann, U. (2002), Designing Components with the C++ STL: A New Approach to Programming, Addison-Wesley Longman Limited, Boston.
    2.Campbell, E., J. Ammenhesuser, J. Cheatham, and D. Fandel (2000), “Technology Transfer #00033920A-ENG, Dynamic. Dynamic Factory Modeling Person Guided Vehicle (PGV) Report”, International SEMATECH.
    3.Chen, C. H. (2003), “Using GA and CTPN for Modeling the Optimization-Based Schedule Generator of a Generic Production Scheduling System”, Master Thesis, Department of Industrial Engineering & Engineer Management, National Tsing Hua University.
    4.Chen, J. H., L. C. Fu, M. H. Lin, and A. C. Huang (2001), “Petri-Net and GA-Based Approach to Modeling, Scheduling, and Performance Evaluation for Wafer Fabrication”, IEEE Transactions on Robotics and Automation, Vol. 5, No. 5, pp. 619-636.
    5.Chrisos, J. and J. Nestel-Patt (1998), “Integration Risks in 300-mm Wafer Fab Automation”, Solid State Technology, Vol. 41, No. 7, pp. 193, 196, 198, 200, 202.
    6.Descrochers, A. A. and R. Y. Al-Jaar (1995), Applications of Petri Net in Manufacturing Systems, IEEE Press, New York.
    7.Egbelu, P. J. and J. M. A. Tanchoco (1984), “Characterization of Automated Guided Vehicle Dispatching Rules”, International Journal of Production Research, Vol. 22, No. 3, pp. 359–374.
    8.Hung, H. P. and C. T. Wang (2002), “Modeling and Performance Evaluation for Automated Material Handling Systems in a 300mm Foundry Fab”, Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington, DC, pp. 3181-3186.
    9.International Technology Roadmap for Semiconductors Factory Integration, 2003 Edition.
    10.Jeng, M. D. and F. DiCesare (1993), “A Review of Synthesis Techniques for Petri Net with Applications to Automated Manufacturing Systems”, IEEE Transactions on Semiconductor Manufacturing, Vol. 23, No. 1, pp.301-312.
    11.Jeng, M. D., X. Xie, and S. W. Chou (1998), “Modeling, Qualitative Analysis, and Performance Evaluation of the Etching Area in an IC Wafer Fabrication System Using Petri Nets”, IEEE Transactions on Semiconductor Manufacturing, Vol. 11, No. 3, pp. 358-373.
    12.Jensen, K. (1995), Coloured Petri Nets: Basic Concepts, Analysis Methods, and Practical Use, Vol. 2, Springer, New York.
    13.Kuo, C. H. (2002), “Modelling and Performance Evaluation of an Overhead Hoist Transport System in a 300 mm Fabrication Plant”, The International Journal of Advanced Manufacturing Technology, Vol. 20, pp. 153-161.
    14.Kuo, C. H., C. H. Wang, and K. W. Huang (2003), “Behavior Modeling and Control of 300 mm Fab Intrabays Using Distributed Agent Oriented Petri Net”, IEEE Transactions on System, Man, and Cybernetics Part A: System and Human, Vol. 33, No. 5, pp. 641-648.
    15.Lee, C. C. and J. T. Lin (1995), “Deadlock Prediction and Avoidance Based on Petri Nets for Zone-Control Automated Guided Vehicle Systems”, International Journal of Production Research, Vol. 33, No. 12, pp. 3249-3265.
    16.Liao, D. and H. S. Fu (2004), “Dynamic OHT Allocation and Dispatching in Large-Scale, 300-mm AMHS Management”, IEEE Robotics and Automation Magazine, Vol. 11, No. 3, pp. 22-33.
    17.Lin, J. T. and C. C. Lee (1996), “Three-Phase Discrete Event Simulation of Timed Petri Nets”, Journal of the Chinese Institute of Industrial Engineers, Vol. 13, No. 1, pp. 11-22.
    18.Lin, J. T., F. K. Wang, and C. K. Wu (2003), “Simulation Analysis of the Connecting Transport AMHS in a Wafer Fab”, IEEE Transactions on Semiconductor Manufacturing, Vol. 16, No. 3, pp. 555-564.
    19.Lin, M. H. and L. C. Fu (2000), “Modelling, Control and Simulation of an IC Wafer Fabrication System: a Generalized Stochastic Coloured Timed Petri Net Approach”, International Journal of Production Research, Vol. 38, No. 14, pp. 3305-3341.
    20.Lin, S. Y. and H. P. Hung (1998), “Modeling and Emulation of a Furnace in IC Fab Based on Colored-Timed Petri Net”, IEEE Transactions on Semiconductor Manufacturing, Vol. 11, No. 3, pp. 410-420.
    21.Liu, F. H. and P. C. Hung (2002), “Control Strategy for Dispatching Multi-Load Automated Guided Vehicles in a Deadlock-Free Environment”, Journal of Mathematical Modelling and Algorithms, Vol. 1, No. 2, pp. 117-134.
    22.Mackulak, G. T. and P. Savory (2001), “A Simulation-Based Experiment for Comparing AMHS Performance in a Semiconductor Fabrication Facility”, IEEE/SEMI Advanced Semiconductor Manufacturing Conference, Vol. 14, No. 3, pp. 273-280.
    23.Murata, T. (1989), “Petri Net: Properties, Analysis and Applications”, IEEE Transactions on Semiconductor Manufacturing, Vol. 77, No. 4, pp.541-580.
    24.Murray, S., G. T. Mackulak, J. W. Fowler, and T. Colvin (2000), “A Simulation-Based Cost Modeling Methodology for Evaluation of Interbay Material Handling in a Semiconductor Wafer Fab”, Proceedings of the 2000 Winter Simulation Conference, pp. 1510-1517.
    25.Odrey, N. G., J. D. Green, and A. Appello (2001), “A Generalized Petri Net Modeling Approach for the Control of Re-entrant Flow Semiconductor Wafer Fabrication”, Robotics and Computer Integrated Manufacturing, Vol. 17, pp. 5-11.
    26.Peters, B. A. and T. Yang (1997), “Integrated Facility Layout and Material Handling System Design in Semiconductor Fabrication”, IEEE Transactions on Semiconductor Manufacturing, Vol. 10, No. 3, pp. 360-369.
    27.Pierce, N. G. and R. Stafford (1994), “Modeling and Simulation of Material Handling for Semiconductor Wafer Fabrication”, Proceedings of the 1994 Winter Simulation Conference, pp. 900-906.
    28.Stanley, T., K. Rust, R. Wright, and J. Maia (2001), “Technology Transfer #01064128A, Automated Material Handling Benefit Quantification Report”, International SEMATECH.
    29.Viswanadham, N. and Y. Narahari (1992), Performance Modeling of Automated Manufacturing Systems, Prentice Hall, New Jersey.
    30.Wu, N. (2001), “Avoiding Deadlock and Reducing Starvation and Blocking in Automated Manufacturing Systems”, IEEE Transactions on Robotics and Automation, Vol. 17, No. 5, pp. 658-669.
    31.Xiong, H. H. and M. C. Zhou (1998), “Scheduling of Semiconductor Test Facility via Petri Nets and Hybrid Heuristic Search”, IEEE Transactions on Semiconductor Manufacturing, Vol. 11, No. 3, pp.384-393.
    32.Yeh, M. S. and W. C. Yeh (1998), “Deadlock Prediction and Avoidance for Zone-Control AGVS”, International Journal of Production Research, Vol. 36, No. 10, pp. 2879-2889.
    33.Zhou, M. C. and M. D. Jeng (1998), “Modeling, Analysis, Simulation, Scheduling and Control of Semiconductor Manufacturing Systems: A Petri Net Approach”, IEEE Transactions on Semiconductor Manufacturing, Vol. 11, No. 3, pp. 333-357.
    34.Zuberek W. M. (1991), “Timed Petri nets: Definitions, Properties, and Applications”, Microelectronics and Reliability: Special Issues on Petri Nets and Related Graph Models, Vol. 31, No. 4, pp. 627-644.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE