簡易檢索 / 詳目顯示

研究生: 陳美霖
Chen, Mei-Lin
論文名稱: 銲接沃斯田鐵系不銹鋼在沿海環境下的腐蝕行為
The Corrosion Behavior of Welded Austenitic Stainless Steels Under Coastal Environments
指導教授: 葉宗洸
Yeh, Tsung-Kuang
王美雅
Wang, Mei-Ya
口試委員: 黃俊源
Huang, Chun-Yuan
藍貫哲
Lan, Kuan-Che
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 102
中文關鍵詞: 銲接沃斯田鐵系不銹鋼應力腐蝕龜裂乾貯筒
外文關鍵詞: Welded austenitic stainless steels, Stress corrosion cracking, Dry storage canister
相關次數: 點閱:5下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銲接沃斯田鐵系不銹鋼為乾貯系統中的密封鋼筒的主要材料,用於貯存用過核子燃料,台灣的乾貯場址選在沿海地區,環境充滿水氣與氯離子,再加上銲接過程中產生的高殘餘張應力以及受敏化現象影響,容易在不銹鋼筒表面引發氯離子誘發應力腐蝕龜裂,當生成的裂縫足以裂穿筒身,將影響用過核子燃料貯存的安全性,因此本實驗希望透過模擬室內乾貯的環境,探討以沃斯田鐵系不銹鋼304L、316L為基材銲接308L、316L銲條所製成不銹鋼U-bend銲件在不同溫度下、固定相對濕度40%的腐蝕行為,並研究相關的腐蝕劣化因子關係。
    實驗結果顯示在溫度40、60及80oC下, 304L/308L與316L/316L SS試片在基材區域與熱影響區的腐蝕形貌以大面積孔蝕的聚合為主,在銲材區域則以枝晶狀腐蝕與孔蝕的聚合為主。根據腐蝕面積的定量計算結果顯示,在溫度40與60oC下,隨著實驗時間增加,腐蝕面積比例上升的速率較80oC的結果快,推測可能是因為在溫度80 oC下,腐蝕在短時間內達到其飽和值。孔蝕深度的量測結果顯示在三種不同溫度下,316L/316L SS試片的基材區域皆有深度超過60μm的孔蝕出現。


    Welded austenitic stainless steels are considered as the materials for dry storage canisters used for interim storage of spent nuclear fuel. However, austenitic stainless steels are susceptible to chloride induced stress corrosion cracking (CISCC), particularly in the presence of residual tensile stress and sensitization due to the welding procedure. Dry storage systems located nearby a coastal site in Taiwan, thus high concentration of moisture and chloride salts in the atmospheric environment may introduce CISCC on the canisters surface. Therefore, the purpose of this study is to evaluate the corrosion behavior of candidate canisters materials in a salt fog test at different temperatures and constant relative humidity of 40% for 1500 hours.
    According to the results of morphology observation, similar corrosion behavior was observed on three different materials at 40, 60 and 80oC. Pitting coalescence was the major corrosion behavior on the base metal and heat affected zone, and interdendritic corrosion and pitting coalescence were the primary corrosion behavior on the weld metal. Based on the calculation of corroded area, the percentage of corroded area increased significantly at 40 and 60oC with time, whereas it was slightly expanded at 80oC. Moreover, the depth of pits up to more than 60μm were measured on the base metal of 316L/316L SS specimens at three different temperatures.

    摘要 i ABSTRACT ii 致謝 iii 目錄 v 表目錄 ix 圖目錄 x 第一章 前言 1 1.1 研究背景 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 乾式貯存系統的介紹 3 2.2 台灣現行乾貯設施 5 2.3 台灣乾貯筒環境 7 2.3.1 密封鋼筒表面溫度 7 2.3.2 密封鋼筒表面濕度 9 2.3.3 氯鹽沉積量 11 2.4 應力腐蝕龜裂 12 2.4.1 機制 13 2.4.2 應力腐蝕龜裂形成三要素 14 2.4.2.1 敏感性材料 14 2.4.2.2 足夠的張應力 16 2.4.2.3 腐蝕性環境 17 2.5 孔蝕 18 2.5.1 孔蝕的起始 19 2.5.2 孔蝕的成長 21 2.6 誘發應力腐蝕龜裂的影響因素 22 2.6.1 溫度的影響 22 2.6.2 相對濕度的影響 24 2.6.3 氯鹽種類的影響 28 2.6.4 氯鹽沉積量的影響 33 2.6.5 銲接的影響 35 第三章 實驗方法 42 3.1 實驗流程 42 3.2 試片製備 44 3.3 模擬沿海環境實驗設計 47 3.4 表面分析 49 3.5 成分分析 52 3.5.1 能量散佈X光分析儀(EDS) 52 3.5.2 光譜分析儀(OES) 53 3.5.3 感應耦合電漿光學發射光譜儀(ICP-OES) 53 3.6 深度分析 54 3.7 微硬度試驗 55 第四章 結果與討論 56 4.1 氯鹽沉積量 56 4.2 尚未進行腐蝕試驗的銲件表面形貌 57 4.3 微硬度量測結果 59 4.4 合成海鹽水溶液的實驗結果 60 4.4.1 U-bend銲件 60 4.4.1.1 腐蝕形貌 60 4.4.1.2 時間的影響 63 4.4.1.3 溫度的影響 67 4.4.1.4 孔蝕深度的量測 71 4.4.2 平板銲件 75 4.4.3 U-bend試片 78 4.4.4 平板試片 79 4.5 氯化鎂水溶液的實驗結果 81 4.5.1 U-bend銲件 81 4.5.1.1 腐蝕形貌 81 4.5.1.2 時間的影響 84 4.5.2 平板銲件 86 4.5.3 U-bend試片 88 4.5.4 平板試片 89 4.6 不同材料與試片類型結果比較 90 第五章 結論 92 第六章 未來建議方向 94 參考資料 95

    [1] 行政院原子能委員會放射性物料管理局。用過核子燃室外貯存與室內貯存安全標準比較。檢自https://www.aec.gov.tw/share/file/focus/CDEKtkeKvrIYgtNWpW94dQ__.pdf(20220509)。
    [2] H. Wimmer , J. Skyzyppek, and M. Koebl (2015). CASTOR® and CONSTOR®. A well established system for the dry storage of spent fuel and high level waste. VGB PowerTech, 95(5), 52-57.
    [3] 行政院原子能委員會放射性物料管理局(2008)。核一廠用過核子燃料乾式貯存設施安全分析報告—第一章 綜合概述。
    [4] 行政院原子能委員會放射性物料管理局(2012)。核二廠用過核子燃料乾式貯存設施安全分析報告—第一章 綜合概述。
    [5] 原子能委員會放射性物料管理局(2020)。用過核子燃料乾式貯存的安全管理。檢自 https://www.aec.gov.tw/fcma/管制背景/用過核子燃料管制/用過核子燃料乾式貯存的安全管理--1_7_19.html (20220509)。
    [6] M. G. El-Samrah, A. Tawfic, and S. Chidiac (2021). Spent nuclear fuel interim dry storage; Design requirements, most common methods, and evolution: A review. Annals of Nuclear Energy, 160, 108408.
    [7] 葉宗洸、黃爾文、王美雅、陳岳泰、李郁萱、王盈之 (2017)。除役核電廠用過核燃料室內乾式貯存安全管制技術—子計劃一:用過核燃料乾式貯存設施風險比較之研析期末報告。行政院原子能委員會放射性物料管理局委託研究計畫研究報告(計畫編號 : 105FCMA009)。
    [8] NRC, U.S (2020). Spent Fuel Storage in Pools and Dry Casks; Key Points and Questions & Answers. Retrieved from: https://www.nrc.gov/waste/spent-fuel-storage/faqs.html.(20220509)
    [9] 葉宗洸、黃爾文、王美雅、陳岳泰、李郁萱、王盈之 (2017)。除役核電廠用過核燃料室內乾式貯存安全管制技術—子計劃二:除役核電廠用過核燃料室內乾式貯存之結構及密封管制技術研析期末報告。行政院原子能委員會放射性物料管理局委託研究計畫研究報告(105FCMA009)。
    [10] 行政院原子能委員會放射性物料管理局(2008)。核一廠用過核子燃料乾式貯存設施安全分析報告-第三章 設施之設計基準。
    [11] T. L. Tsai, Y. F. Chiou and S. C. Tsai (2020). Overview of the nuclear fuel cycle strategies and the spent nuclear fuel management technologies in Taiwan. Energies, 13(11), 2996.
    [12] 行政院原子能委員會放射性物料管理局(2012)。核二廠用過核子燃料乾式貯存設施安全分析報告-第三章 設施之設計基準。.
    [13] Y. S. Tseng, C. C. Hau, J. R. Wang, P. H. Lee , C. T. Liu and C. K. Shih (2017). Developing a Re-Inspection Planning Method for CI-SCC in Chinshan ISFSI. 580-586.
    [14] 施純寬、曾永信(2014)。乾式貯存設施設計壽命期間熱傳行為分析。103年度行政院原子能委員會放射性物料管理局委託研究計畫期末報告。(計畫編號 : 103FCMA001)
    [15] 施純寬、曾永信(2015)。核二廠乾式貯存設施設計壽命期間熱傳行為分析。104 年度行政院原子能委員會放射性物料管理局委託研究計畫期末報告。(計畫編號 : 104FCMA011)
    [16] 張惠雲(2016)。乾式貯存密封鋼筒材料應力腐蝕劣化發展評估之研究。行政院原子能委員會放射性物料管理局委託研究計畫研究報告。(計畫編號:104FCMA021)
    [17] 張惠雲、邱建國 (2013)。不銹鋼材料應力腐蝕劣化機制研析與對策研究期末報告。行政院原子能委員會放射性物料管理局。(計畫編號:102FCMA003)
    [18] G. Oberson, D. Dunn, T. Mintz, X. He (2013). US NRC-Sponsored Research on Stress Corrosion Cracking Susceptibility of Dry Storage Canister Materials in Marine Environments-13344. WM2013 Conference, Arizona, U.S.
    [19] 羅建明、蔡立宏、柯正龍、賴瑞應、莊凱迪(2022)。2021年臺灣大氣腐蝕劣化因子調查研究資料年報。臺北市:交通部運輸研究所.
    [20] R. Parrott and H. Pitts (2011).Chloride Stress Corrosion Cracking in Austenitic Sstainless Steel: Assessing susceptibility and structural integrity. UK Health and Safety Executive.
    [21] V. S. Raja and T. Shoji (2011). Stress Corrosion Cracking: Theory and Practice. Woodhead Publishing.
    [22] P. Chen, T. Shinohara and S. Tsujikawa (1997). Applicability of the Competition Concept in Determining the Stress Corrosion Cracking Behavior of Austenitic Stainless Steels in Chloride Solutions. Material Science, 46, 313-320.
    [23] D. Engelberg and J. Richardson(2010). Shreir's Corrosion: Intergranular Corrosion. Elsevier B.V., 810-827.
    [24] Y. Xie and J. Zhang (2015). Chloride-Induced Stress Corrosion Cracking of Used Nuclear Fuel Welded Stainless Steel Canisters: A review. Journal of Nuclear Materials, 466, 85-93.
    [25] K. Macdonald (2011). Fracture and Fatigue of Welded Joints and Structures. Woodhead Publishing.
    [26] J. Truman (1969). Methods Available for Avoiding Stress Corrosion Cracking of Austenitic Stainless Steels in Potentially Dangerous Environments. in Stainless Steels, ISI publication 117, Iron and Steel Institute.
    [27] A. Turnbull and S. Zhou (2008). Impact of Temperature Excursion on Stress Corrosion Cracking of Stainless Steels in Chloride Solution. Corrosion science, 50(4), 913-917.
    [28] M. O. Speidel (1981). Stress Corrosion Cracking of Stainless Steels in NaCl Solutions. Metallurgical Transactions A, 1981. 12(5), 779-789.
    [29] D. R. McIntyre and C. Dillon (1985). Guidelines for Preventing Stress Corrosion Cracking in the Chemical Process Industries. Ohio: Materials Technology Institute of the Chemical Process Industries.
    [30] X. He, T. S. Mintz, R. Pabalan, L. Miller, G. Oberaon (2014). Assessment of Stress Corrosion Cracking Susceptibility for Austenitic Stainless Steels Exposed to Atmospheric Chloride and Non-Chloride Salts. U. S. Nuclear Regulatory Commission.
    [31] H. H. Strehblow (1976). Nucleation and Repassivation of Corrosion Pits for Pitting on Iron and Nickel. Materials and Corrosion, 27(11), 792-799.
    [32] T. Hoar, D. Mears and G. Rothwell (1965). The Relationships Between Anodic Passivity, Brightening and Pitting. Corrosion Science, 5(4), 279-289.
    [33] C. Chao, L. Lin and D. Macdonald (1981). A Point Defect Model for Anodic Passive Films: I. Film Growth Kinetics. Journal of the Electrochemical Society, 128(6), 1187.
    [34] L. Lin, C. Chao and D. Macdonald (1981). A Point Defect Model for Anodic Passive Films: II. Chemical Breakdown and Pit Initiation. Journal of the Electrochemical Society, 128(6), 1194.
    [35] K. J. Vetter and H.H. Strehblow (1970). Entstehung und Gestalt von Korrosionslöchern bei Lochfraß an Eisen und theoretische Folgerungen zur Lochfraßkorrosion. Berichte der Bunsengesellschaft für physikalische Chemie, 74(10), 1024-1035.
    [36] N. Sato (1971). A Theory for Breakdown of Anodic Oxide Films on Metals. Electrochimica Acta, 16(10), 1683-1692.
    [37] T. Hoar and W. Jacob (1967). Breakdown of Passivity of Stainless Steel by Halide Ions. Nature, 216(5122), 1299-1301.
    [38] Y. Xie (2016). Chloride-Induced Stress Corrosion Cracking in Used Nuclear Fuel Welded Stainless Steel Canisters. The Ohio State University.
    [39] D. Kopeliovich (2018). Pitting Corrosion. Retrieved from: http://towww.substech.com/dokuwiki/doku.php?id=pitting_corrosion. (20220519)
    [40] P. Marcus (1953). Corrosion Mechanisms in Theory and Practice. Boca Raton:CRC Press.
    [41] L. Caseres and T. S. Mintz (2010). Atmospheric Stress Corrosion Cracking Susceptibility of Welded and Unwelded 304,304 L, and 316L Austenitic Stainless Steels Commonly Used for Dry Cask Storage Containers Exposed to Marine Environments. U. S. Nuclear Regulatory Commission.
    [42] T. Prosek and A. L. Gac (2014). Low-Temperature Stress Corrosion Cracking of Austenitic and Duplex Stainless Steels under Chloride Deposits. Corrosion, 70(10), 1052-1063.
    [43] L. Guo, S. Street and H. M. Ali (2019). The Effect of Relative Humidity Change on Atmospheric Pitting Corrosion of Stainless Steel 304L. Corrosion Science, 150, 110-120.
    [44] D. G. Enos, C.R. Bryan and K. Norman (2013). Data Report on Corrosion Testing of Stainless Steel SNF Storage Canisters. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
    [45] J. Oldfield and B. Todd (1991). Room Temperature Stress Corrosion Cracking of Stainless Steels in Indoor Swimming Pool Atmospheres. British Corrosion Journal, 26(3), 173-182.
    [46] T. Prosek, A. Iversen and C. Taxen (2008). Low temperature stress corrosion cracking of stainless steels in the atmosphere in presence of chloride deposits. Corrosion 2008, New Orleans, Louisiana.
    [47] P. Dong, G. Scatigno and M. Wenman (2021). Effect of salt composition and microstructure on stress corrosion cracking of 316L austenitic stainless steel for dry storage canisters. Journal of Nuclear Materials, 545, 152572.
    [48] K. Waldrop (2014). Calvert Cliffs Stainless Steel Dry Storage Canister Inspection. Calvert Cliffs Stainless Steel Dry Storage Canister Inspection. EPRI, 11.
    [49] C. R. Bryan and D. Enos (2014). Results of stainless steel canister corrosion studies and environmental sample investigations. Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
    [50] M. Wataru (2016). Study on the commercial realization of concrete cask for interim storage of spent nuclear fuel. Proposal and verification of code case on SCC countermeasure of canister. CPERI, 1-4, 1.
    [51] T. S. Mintz, L. Caseres, X. He, J. Dante, G. Oberson and D.Dunn (2012). Atmospheric Salt Fog Testing to Evaluate Chloride-Induced Stress Corrosion Cracking of Type 304 Stainless Steel. Corrosion 2012, Salt Lake City, Utah.
    [52] K. Shirai (2011). SCC Evaluation Test of a Multi-Purpose Canister. 13th International High-Level Radioactive Waste Management Conference (IHLRWMC).
    [53] C. H. Hsu, T.C. Chen,R. T. Huang and L. W. Tsay (2017). Stress Corrosion Cracking Susceptibility of 304L Substrate and 308L Weld Metal Exposed to a Salt Spray. Materials, 10(2), 187.
    [54] H. J. Qu, F. Tao, N. Gu, T. Montoya, J. M. Taylor, R. F. Schaller, E. Schindelholz and J. P. Wharry (2022). Crystallographic Effects on Transgranular Chloride-Induced Stress Corrosion Crack Propagation of Arc Welded Austenitic Stainless Steel. Material Science.
    [55] M. Mayuzumi, T. Arai and K. Hide (2003). Chloride Induced Stress Corrosion Cracking of Type 304 and 304L Stainless Steels in Air. Zairyo-to-Kankyo, 52(3), 166-170.
    [56] ASTM G30-97, Standard Practice for Making and Using U-bend Stress-Corrosion Test Specimens, ASTM International, West Conshohocken, PA 2016.
    [57] ASTM D1141-98, Standard Practice for the Preparation of Substitute Ocean Water, ASTM International, West Conshohocken, PA 1998.
    [58] 羅勝全(2013)。科學基礎研究之重要利器—掃描式電子顯微鏡(SEM)。科學研習月刊。
    [59] A. Nanakoudis(2019)。什麼是SEM?淺談掃描式電子顯微鏡技術。檢自:https://www.kctech.com.tw/what-is-sem/ (20220429)
    [60] JSM-7610F Schottky Field Emission Scanning Electron Microscope. Retrieved from: http://towww.substech.com/dokuwiki/doku.php?id=pitting_corrosion (20220429)
    [61] J. E. Turner (2007). Atom, Radiation and Radiation Protection. Weinheim, Germany.: Willey VCH Verlag GmbH & Co. KGaA.
    [62] 光譜分析儀 (Optical Emission Spectrometer, OES)。 檢自:https://mme.ttu.edu.tw/var/file/51/1051/img/275/182890805.pdf(20220503)
    [63] 博精儀器股份有限公司。ICP/OES 原理概論. 檢自: http://file.yizimg.com/400811/2012082911241793.pdf.(20220503)
    [64] 感應耦合電漿放射光譜儀(ICP-OES) 檢自:https://nscric.site.nthu.edu.tw/p/404-1186-122439.php?Lang=zh-tw.(20220503)
    [65] 莊ㄧ全、黃暉升、張憲彰(2009)。雷射掃描共軛焦顯微鏡 Laser Confocal Microscopy。科儀新知。
    [66] ASTM E384-05a, Standard Test Method for Microindentation Hardness of Materials, ASTM International, West Conshohocken, PA 19428-2959.

    QR CODE