簡易檢索 / 詳目顯示

研究生: 許登凱
Hsu, Den-Kai
論文名稱: 錳摻雜氧化鋅奈米棒的電阻轉換性質研究
Study of resistive switching behaviors for Mn doped ZnO nanorods
指導教授: 周立人
Chou, Li-Jen
口試委員: 陳貴賢
林麗瓊
闕郁倫
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 62
中文關鍵詞: 電阻轉換特性氧化鋅
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    增強氧化鋅奈米線電阻轉換性質的方法有兩種。第一種方式是藉由奈米棒的幾何結構去限制導電燈絲成長方向。第二點利用錳的摻雜使記憶窗口增大。此外,電阻式記憶體有高阻值比,更快的寫入速度等優勢且非常適合開發為高密度記憶體。
    首先 , 我們可以成功地藉由水熱法控制不同直徑和長寬比的錳摻雜氧化鋅奈米棒層。隨後,我們分析了錳摻雜氧化鋅奈米棒層的表面形貌,晶體結構和組成藉由SEM,X-ray,TEM,EDX和PL。
    我們測量其電阻轉換行為的錳摻雜氧化鋅奈米棒層藉由Keithley 4200。在我的實驗中我們發現其電阻轉換特性可以分為三個討論範疇。首先,相對於未摻雜和Mn摻雜ZnO奈米棒層,我們測量彼此不同的電阻轉換行為。第二,我們也設計了不同的奈米元件設計不同的Mn含量和長度的參數來討論的電阻轉換特點。此外,錳摻雜奈米棒層元件藉由控制保護電流而所引起多態記憶效應被觀察到。


    There are two approches to enhance the resistive switching behavior in ZnO-based RRAM. One is trying to improve the resistive switching characteristics through the nanorods-limited geometry in ZnO-based RRAM devices. The other is trying to adjust concentration of dopant, Mn, which would increase the operative resistance window as the concentration increases. In addition, the higher resistance ratio, the faster programming speed properties of RRAM are suitable for development as a high-density memory.
    First of all, Mn-doped ZnO nanorods can be controlled growth successfully with different diameter and aspect ratio by hydrothermal method. We analyzed the surface morphology, crystalline structure and the composition of Mn-doped ZnO nanorods by SEM, XRD, TEM, EDX, and PL.
    We measured resistive switching behaviors of the Mn-doped ZnO nanorods by Keithley 4200. The resistive switching characteristics were observed and fell into three categories. First, different resistive switching behaviors can be observed in different types of devices, undoped and Mn-doped ZnO nanorods. Second, the resistive switching characteristics can be modified by different contents of Mn and different lengthes of ZnO nanrods. Furthermore, multistate memory effects could be manipulated by applying different current compliance in the device.

    Content... I Acknowledgement ... III Abstract...IV 摘要...V Chapter 1 Introduction of memory:... 1 1-1Emerging non-volatile memories: ...3 1.1.1 FeRAM (Ferroelectric RAM) ...3 1.1.2 MRAM (Magnetic RAM) ...5 1.1.3 PCRAM (Phase change RAM) ...7 1.1.4 RRAM (Resistance RAM)....8 1-2 Mechanism of RRAM (Resistance RAM)... 11 1-2-1 Thermochemical Systems: joule heating... 11 1-2-2 Electrochemical Metallization Systems: cation ion: ...14 1-2-3 Redox processes of resistive switching in anion migration: ...17 1-2-4 Unipolar:...20 1-2-5 Bipolar:...20 1-3 Solution-Base Synthesis Method: ...21 1-4 Resistive switch in Mn doped ZnO: ...23 1-5 Advantages of the nanorods geometry in RRAM:...26 1-6 Motivation and Research Directions: ...29 Chapter 2 Experimental Procedures... 30 2-1 Synthesis of Mn-doped ZnO nanorods...30 2.1.1 Sample Preparation: ...30 2.1.2 Hydrothermal Process: ...31 2.1.3 Device Fabrication and measure: ...31 2.2 Properties Analysis...32 2.2.1 Scanning Electron Microscope Observation : ...32 2.2.2 Photoluminescence Measurement : ...32 2.2.3 Transmission Electron Microscope Observation : ...33 2.2.4 X-Ray Diffraction Analysis : ...33 II Chapter 3 Results and Discussion... 34 3.1 Optimum Experimental Parameters...34 3.1.1 The concentration of Zn2+ ...34 3.2.1 X-Ray Diffraction Analysis ...39 3.2.2 TEM Analysis ...41 3.2.3 EDX Analysis...43 3.2.4 Photoluminescence Measurement of Mn-Doped ZnO Nanorods ...45 3-3 The Resistive Switching Characteristics of Mn-Doped ZnO Nanorods ...47 3.3.1 The difference of the resistive switching characteristics between undoped and Mn-doped ZnO nanorods....47 3.3.2 Resistive switching behaviors of Mn-doped ZnO nanorods...49 3.3.3 Multistate memory effects induced compliance current in Mn-doped nanorods52 Chapter 4 Summary and Conclusions ... 55 Reference: ... 57

    Reference:
    [1] R. Waser, M. Aono “Nanoionics-based resistive switching memories”, Nature Materials, 6, 11,2007.
    [2] G. Muller, T. Happ, M. Kund, GY. Lee, N. Nagel, R. Sezi , “Status and outlook of emerging nonvolatile memory technologies ” IEEE international electron devices meeting technical digest, 567-570 ,2004.
    [3] 劉志益, 曾., 電阻式非揮發記憶體之近期發展,2008
    [4] D. Ielmini, “Reliability issues and modeling of Flash and post-Flash memory” ,Microelectronic Engineering,86,7-9, 1870-1875,2009
    [5] A. Sheikholeslami and P. G. Gulak, “A survey of circuit innovations in ferroelectric random-access memories” Proceedings of the IEEE,88,5,667-689, 2000
    [6] R. Ramesh, S. Aggarwal, O. Auciello, “Science and technology of ferroelectric films and heterostructures for non-volatile ferroelectric memories” , Materials Science & Engineering R-Reports ,32,6,191-236,2001
    [7] J. G. Zhu, “Magnetoresistive random access memory: the path to competitiveness and scalability” Proceedings of the IEEE,96,11,1786-1798,2008
    [8] WW. Zhuang, W. Pan, BD. Ulrich, JJ. Lee, L. Stecker, A. Burmaster, DR. Evans, ST. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, K. Sakiyama, Y. Wang, SQ. Liu, NJ .Wu, A. Ignatiev, “Novell colossal magnetoresistive thin film nonvolatile resistance
    58
    random access memory (RRAM)” IEEE international electron devices meeting technical digest. ,193-196, 2002
    [9] IG. Baek, MS. Lee, S. Seo, MJ. Lee, DH. Seo, DS. Suh, JC. Park, SO. Park, HS. Kim, IK. Yoo, UI. Chung, JT. Moon, “Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses” IEEE international electron devices meeting technical digest,587-590, 2004
    [10] R. Waser, R. Dittmann, G. Staikov, K. Szot, “Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges” Advanced Materials.,21,25,2632,2009
    [11] A. Sawa, “Resistive switching in transition metal oxides” Material today ,11,6,28-36,2008
    [12] GW. Burr, BN. Kurdi, JC. Scott, CH. Lam, K Gopalakrishnan, RS. Shenoy, “Overview of candidate device technologies for storage-class memory” Ibm Journal of Research and Development,52,4,449-464,2008
    [13] K. Terabe, T. Hasegawa, T. Nakayama, M. Aono, “Quantized conductance atomic switch” Nature,433 ,7021,47-51,2005
    [14] K. Szot, W. Speier, G. Bihlmayer, R. Waser, “Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3”Nature Material ,5,4,312-320,2006
    [15] N. Xu, LF. Liu, X. Sun, XY. Liu, DD. Han, Y. Wang, RQ.Han, JF. Kang, B. Yu
    59
    “Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random-access memories” Applied Physics Letters,92,23,3, 2008
    [16] JB. Yun, S. Kim ,S Seo, MJ. Lee, DC. Kim, SE. Ahn, Y. Park, J. Kim, H. Shin “Random and localized resistive switching observation in Pt/NiO/Pt” Physica Status Solidi-Rapid Research Letters,1,6,280-282, 2007
    [17] U. Russo, D. Lelmini, C. Cagli, AL. Lacaita, S. Spiga, C. Wiemer, M. Perego, M. Fanciulli, “Conductive-filament switching analysis and self-accelerated thermal dissolution model for reset in NiO-based RRAM”, IEEE international electron devices meeting technical digest, 775-778,2007
    [18] M. Andrés Vergés, A. Mifsud and C. J. Serna, “Formation of rod-like Zinc-Oxide mocrocrystals in homogeneous solutions” Journal of the Chemical Society, Faraday Transactions.,86,6,959-963,1990
    [19] L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions”Advanced Materials,15,5,464-466, 2003
    [20] WJ. Li, EW. Shi, WZ. Zhong, ZW. Yin, “Growth mechanism and growth habit of oxide crystals”,Journal of Crystal Growth,15,5,464-466,1999
    [21] WZ. Zhong, GZ. Liu, EW. Shi, SK. Hua, DY. Tang, QL. Zhao, “Growth units and formation mechanisms of the crystals under hydrothermal conditions” Science in China Series B-Chemistry Life Sciences & Earth Sciences,37,11,1288-1297,1994
    60
    [22] YC. Yang, F. Pan, Q. Liu, M. Liu, F. Zeng, “Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application” Nano Letters,9,4,1636-1643,2009
    [23] H. Peng and T. Wu, “Nonvolatile resistive switching in spinel ZnMn2O4 and ilmenite ZnMnO3” Applied Physics Letters,95,15,3 2009
    [24] WY. Chang, CA. Lin, JH. He, TG. Wu, “Resistive switching behaviors of ZnO nanorod layer” Applied Physics Letters,96,24,3,2010
    [25] SI. Kim, JH. Lee, YW. Chang, SS. Hwang, KH Yoo “Reversible resistive switching behaviors in NiO nanowires” Applied Physics Letters,93,3,3, 2008
    [26] ZRR. Tian, JA. Voigt, J. Liu, B. McKenzie, MJ. McDermott, MA. Rodriguez, H. Konishi, HF. Xu, “Complex and oriented ZnO nanostructures” Nature Materials,2,12,821-826,2003
    [27] WJ. Li, EW. Shi, WZ. Zhong, ZW. Yin, “Growth mechanism and growth habit of oxide crystals” Journal of Crystal Growth,203,1,186-196,1999
    [28] F. Xu, K. Yu, GD. Li, Q. Li, ZQ. Zhu, “Synthesis and field emission of four kinds of ZnO nanostructures: nanosleeve-fishes, radial nanowire arrays, nanocombs and nanoflowers” Nanotechnology,17,12,2855-2859,2006
    [29] DW. Wu, ZB. Huang, GF. Yin, YD. Yao, XM. Liao, D. Han, X. Huang, JW. Gu, “Preparation, structure and properties of Mn-doped ZnO rod arrays”
    61
    Crystengcomm ,12,192-198, 2010
    [30] J.H. Li, DZ. Shen, JY. Zhang, DX. Zhao, BS. Li, YM. Lu, YC. Liu, XW. Fan “The effect of Mn2+ doping on strcuture and photoluminescence of ZnO nanofilms synthesized by solgel method” Journal of Luminescence,122,352-354, 2007
    [31]P.S. Xu, YM. Sun, CS. Shi, FQ. Xu, HB. Pan, “The electronic structure and spectral properties of ZnO and its defects” Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms,199,286-290, 2003
    [32] SM. Yu, HSP. Wong, “A phenomenological model for the reset mechanism of metal oxide RRAM” IEEE Electron Device Letters,31,12, 2010
    [33] K. Tsunoda, K. Kinoshita,H. Noshiro, Y. Yarnazaki, T. Lizuka, Y. Ito, A. Takahashi, A. Okano, Y. Sato, T. Fukano, M. Aoki, Y. Sugiyama, “Low power and high speed switching of Ti-doped NiO ReRAM under the unipolar voltage source of less than 3 V” IEEE International Electron Devices Meeting ,54,10,2007
    [34] WY. Chang, YC. Lai, TB. Wu, SF. Wang, F. Chen, MJ. Tsai, “Unipolar resistive switching characteristics of ZnO thin films” Applied Physics Letters,92,022110,2008
    [35] S. Lee, H. Kim, DJ. Yun, SW. Rhee, K. Yong, “Resistive switching characteristics of ZnO thin film grown on stainless steel for flexible nonvolatile memory devices”Applied Physics Letters ,95,262113,2009
    [36] S. Kim, H. Moon,D. Gupta, S.Yoo, YK. Choi, “Resistive switching characteristics of
    62
    Sol–Gel Zinc Oxide films for flexible memory applications” IEEE Transactions on Electron Devices ,56,4,2009
    [37] Kazuki Nagashima,T. Yanagida, K. Oka, M. Taniguchi, T. Kawai, JS. Kim, BH. Park “ Resistive Switching Multistate Nonvolatile Memory Effects in a Single Cobalt Oxide Nanowire”Nano Letters ,10,1359-1363, 2010

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE