研究生: |
黃彥銘 Yen-Ming Huang |
---|---|
論文名稱: |
以動態溫度追踨法量測熱管最大熱傳量之實驗設計 The Experimental Design for the Qmax Measurement by Dynamic Temperature-Tracing Method |
指導教授: |
林唯耕
Wei-Keng Lin |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 109 |
中文關鍵詞: | 熱管 、最大熱傳量 、燒結 、動態溫度追蹤 |
外文關鍵詞: | Heat Pipe, Heat Dissipate, Sinter, Dynamic Tracing |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要是針對電子構裝散熱中之熱管元件進行了熱傳性能測試。利用熱管傳統標準測試法和動態溫度追蹤法(Dynamic-Temperature-Tracing Method),比較二方法的熱管最大熱傳量和理論模擬彼此之間的差異性。在進行實驗之前,我們在蒸發部設置了十二個溫度點,以校正熱管的蒸發部並訂定實驗規範,以確保之後的實驗都是在同樣的條件下測試,經理論和實驗的印證,蒸發部可用多源非等加熱功率的模式,在各加熱功率時,其軸向溫度皆可保持在1℃內,徑向溫度則在2℃內,均勻地對熱管加熱。利用傳統標準測試法所測得之熱管最大熱傳量和理論模擬的誤差在10%以內,而動態溫度追踨法則在15%以內。利用動態溫度追踨法量測的結果顯示:冷凝部長度為60mm,冷凝水溫16℃,測試時間為5分的實驗誤差最低;冷凝部長度為40mm,冷凝部水溫11℃,測試時間為5分的實驗誤差最低;冷凝部長度為30mm,冷凝水溫11℃,測試時間為2分的實驗誤差最低,由上數據可歸納出,隨冷凝部長度的縮短,降低冷凝部水溫可提高實驗的準確性。且當冷凝部水溫降低,絕熱部溫度也會隨之降低,進而降低最大熱傳量,這樣的趨勢,有助於減少測試時所取的加熱瓦數,利於縮短實驗時間。此外,動態溫度追踨法的測試時間由5分鐘縮短至2分鐘平均只會增加5%的誤差,所以可以在維持實驗結果正確性的前提下,縮短測試時間為2分鐘。
The purpose of the thesis is to test the heat pipe maximum heat transfer rate (Qmax) of the electronics cooling system. Two test methods were compared with each other which were Traditional Standard Test Method and Dynamic-Temperature-Tracing Method (D.T.T.). A sensitivity study was also achieved by this thesis. In order to maintain axial temperature difference less than 10C and radial temperature difference less than 20C, a non-uniform power load was introduced into the evaporator. The non-uniform power load can let the heat homogeneously flow into the evaporator. The error of Qmax between Traditional Standard Test Method and Simulation result is under 10% , and the error of Qmax between D.T.T Method and Simulation is under 15%. The results of D.T.T. show that in the same test period, when the condenser length is decreasing, then reduce the cooling water temperature would increase the accuracy. The lower temperature of the cooling water was implied a lower adiabatic temperature, then the Qmax was decreasing too and result in the decreasing of the test period. In addition, the test time of D.T.T. method can only increase 5% error equally by 5 minutes reductions to 2 minutes. Therefore, under the maintenance experiment result accuracy, the test time could reduce to 2 minutes.
參考文獻
[1] Michael I. Ellsworth,” CHIP POWER DENSITY AND MODULE COOLING TECHNOLOGY PROJECTIONS FOR THE CURRENT DECADE” ,2004 Inter Society Conference on Thermal Phenomena.
[2] Gaugler,R.S. US Patent Application. Dec.21, 1942. Published US Patent NO.2350348. 6 June 1944.
[3] Grover, G..M. US Patent 3229759. Filed 1963.
[4] Grover, G..M. Cotter,T.P.,Erickson, G.F. Structures of very high thermal conductance.J. App.Phys.Vol.35, p1990,1964.
[5] Deverall, J.E. and Kemme, J.E. Satellite heat pipe. USAEC Report LA-3278, Contract W-7405-eng-36. Los Alamos Scientific Laboratory, University of California, September 1970.
[6] Kwang-Soo Kim, ” Heat pipe cooling technology for desktop PC CPU ”, Applied Thermal Engineering 23 (2003) 1137-1144.
[7] Yasumi Sasaki, Yuichi Kimura, Kenichi Namba, ”The ultra-thin sheet-shaped heat pipe “Pera-flex” ”, 13th International Heat Pipe Conference (13th IHPC), pp250-255, 2004.
[8] 詹耀程,”以蒸發部溫度動態行為分析微小熱管之最大熱傳量”,國 立清華大學工程與系統科學研究所碩士論文,六月2005
[9] Kenichi Namba, Naoki Kimura, Jun Niekawa, Yuichi Kimura, Nobuyuki Hashimoto, ” Heat-Pipes for Electronic Devices Cooling and Evaluation of Their Thermal Performance ”, IEEE, InterSociety Conference on Thermal Phenomena, pp.456-459,1998.
[10] S.A. Said and B.A. Akash, “Experimental Perforance of a Heat Pipe”, Int.Comm. Heat Mass Transfer, Vol. 26, No. 5, pp. 679-684, 1999.
[11] I. Sauciuc, M. Mochizuki, K. Mashiko, Y. Saito and T. Nguyen, “The Design and Testing of the Super Fiber Heat Pipes for Electronic Cooling Applications”, Sixteen IEEE SEMI-THERM Symposium, pp. 27-32,2000.
[12] S.H.Moon, C. G. Choi, H. Gunn, and T. G. Choy, “Experimental Study on Performance of a Miniature Heat Pipe with Woven-Wired Wick”, Inter Society Conference on Thermal Phenomena, pp. 129-133, 2000.
[13] Moon, Seok Hwan; Hwang, Gunn; Yun, Ho Gyeong; Choy, Tae Goo; Kang, Young II ,” Improving thermal performance of miniature heat pipe for notebook PC cooling” , Microelectronics Reliability Volume: 42, Issue: 1, January, 2002, pp. 135-140
[14] Moon, Seok Hwan; Hwang, Gunn; Ko, Sang Choon; Kim, Youn Tae ,” Experimental study on the thermal performance of micro-heat pipe with cross-section of polygon” , Microelectronics Reliability Volume: 44, Issue: 2, February, 2004, pp. 315-321
[15] Murer, S.; Lybaert, P.; Gleton, L.; Sturbois, A. ,” Experimental and numerical analysis of the transient response of a miniature heat pipe” , Applied Thermal Engineering Volume: 25, Issue: 16, November, 2005, pp. 2566-2577