研究生: |
李光中 Li, Guang Zhong |
---|---|
論文名稱: |
探討細菌素修飾後抗腸癌細胞與抗細菌的效果 Modification of bacteriocin for searching anti colorectal cancer and antibacteria effect |
指導教授: |
林志侯
Lin, Thy Hou |
口試委員: |
高茂傑
Kao, Mou Chieh 彭明德 Perng, Ming Der |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 分子醫學研究所 Institute of Molecular Medicine |
論文出版年: | 2016 |
畢業學年度: | 105 |
論文頁數: | 52 |
中文關鍵詞: | 細菌素 |
外文關鍵詞: | bacteriocin |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
癌症目前仍是嚴重威脅人類性命的疾病,在 2012 年仍有近千萬的人死於癌症,因此積極發展抗癌症的藥物是必要的。傳統化療藥物雖然可在初期有效抑制癌症細胞,然而它是一個不受控制的藥物,因為正常的細胞也會受到影響,更嚴重的事是在癌症後期,癌細胞對化療藥物將具有抗藥性,而正常細胞仍然沒有抵抗力,因此尋找下一個能有效針對癌細胞的藥物成為世界重要的議題。近幾年細菌素被發現不僅具有抗菌的功能,甚至可作用於部分癌細胞,其中有幾個細菌素更展現出高度專一性。
本實驗藉由修改前人在 Lactobacillus Casei 菌株中找到的 Class II 細菌素 BD21,並利用基因轉殖技術殖入大腸桿菌且大量表現,之後進行細胞活性測試,由此實驗發現經修改後的細菌素 N3 可區別腸癌細胞與正常細胞。
Abstract
Cancer is the most dangerous disease in the world, despite their have a lot of treatment, however cancer doesn’t disappear from human. In the traditional chemotherapeutic agents which used for treating
cancer not only have no specificity on normal cell, but also it will have a lot of side effect, even the cancer cell will develop resistant ability. Hence, human need to discover novel anti-cancer drugs against different types of cancer. In the recent research have pointed out the therapeutic potential drugs, various bacteriocins.
In this thesis we use BD21whcih bacteriocin belongs to class II and have anticancer ability as model to exchange its amino acids for pursuing more higher cytotoxicity to colon cancer. We found a protein that just need half concentration to kill colon cancer.
參考文獻
1. Nissen-Meyer, J. and I.F. Nes, Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Arch Microbiol, 1997. 167(2-3): p. 67-77.
2. Kim, D., et al., Development of a novel antimicrobial peptide AWRK6. 2016, 2016. 11(2): p. 9.
3. Pires, J., et al., In Vitro Activity of the Novel Antimicrobial Peptide Dendrimer G3KL against Multidrug-Resistant Acinetobacter baumannii and Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 2015. 59(12): p. 7915-7918.
4. Yang, S.-C., et al., Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Frontiers in Microbiology, 2014. 5: p. 241.
5. Hühne, K., et al., Analysis of the sakacin P gene cluster from Lactobacillus sake Lb674 and its expression in sakacin-negative Lb. sake strains. Microbiology, 1996. 142(6): p. 1437-1448.
6. Axelsson, L. and A. Holck, The genes involved in production of and immunity to sakacin A, a bacteriocin from Lactobacillus sake Lb706. Journal of Bacteriology, 1995. 177(8): p. 2125-37.
7. Venema, K., et al., Functional analysis of the pediocin operon of Pediococcus acidilactici PAC1. 0: PedB is the immunity protein and PedD is the precursor processing enzyme. Molecular microbiology, 1995. 17(3): p. 515-522.
8. Quadri, L.E., et al., Characterization of a locus from Carnobacterium piscicola LV17B involved in bacteriocin production and immunity: evidence for global inducer-mediated transcriptional regulation. Journal of Bacteriology, 1997. 179(19): p. 6163-71.
9. Nes, I.F., S. Yoon, and D.B. Diep, Ribosomally synthesiszed antimicrobial peptides (bacteriocins) in lactic acid bacteria: a review. Food Science and Biotechnology, 2007. 16(5): p. 675.
10. Rea, M.C., et al., Classification of Bacteriocins from Gram-Positive Bacteria, in Prokaryotic Antimicrobial Peptides: From Genes to Applications, D. Drider and S. Rebuffat, Editors. 2011, Springer New York: New York, NY. p. 29-53.
11. Klaenhammer, T.R., Genetics of bacteriocins produced by lactic acid bacteria. FEMS Microbiology Reviews, 1993. 12(1-3): p. 39-85.
12. Jung, G. and H.-G. Sahl, Nisin and novel lantibiotics. 1991: Springer Science & Business Media.
13. Bierbaum, G. and H.G. Sahl, Lantibiotics: mode of action, biosynthesis and bioengineering. Curr Pharm Biotechnol, 2009. 10(1): p. 2-18.
14. Meindl, K., et al., Labyrinthopeptins: A New Class of Carbacyclic Lantibiotics. Angewandte Chemie International Edition, 2010. 49(6): p. 1151-1154.
15. Mathur, H., et al., The Sactibiotic Subclass of Bacteriocins: An Update. Current Protein and Peptide Science, 2015. 16(6): p. 549-558.
16. Drider, D., et al., The Continuing Story of Class IIa Bacteriocins. Microbiology and Molecular Biology Reviews, 2006. 70(2): p. 564-582.
17. Tahara, T., et al., Isolation, partial characterization, and mode of action of Acidocin J1132, a two-component bacteriocin produced by Lactobacillus acidophilus JCM 1132. Applied and Environmental Microbiology, 1996. 62(3): p. 892-7.
18. Simon, L., et al., Sakacin G, a New Type of Antilisterial Bacteriocin. Applied and Environmental Microbiology, 2002. 68(12): p. 6416-6420.
19. Nissen-Meyer, J., et al., Structure-Function Relationships of the Non-Lanthionine-Containing Peptide (class II) Bacteriocins Produced by Gram-Positive Bacteria. Current Pharmaceutical Biotechnology, 2009. 10(1): p. 19-37.
20. Uteng, M., et al., Three-dimensional structure in lipid micelles of the pediocin-like antimicrobial peptide sakacin P and a sakacin P variant that is structurally stabilized by an inserted C-terminal disulfide bridge. Biochemistry, 2003. 42(39): p. 11417-11426.
21. Papagianni, M. and S. Anastasiadou, Pediocins: The bacteriocins of Pediococci. Sources, production, properties and applications. Microbial Cell Factories, 2009. 8(1): p. 1-16.
22. Ennahar, S., et al., Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiology Reviews, 2000. 24(1): p. 85-106.
23. Miller, K.W., et al., Isolation and Characterization of Pediocin AcH Chimeric Protein Mutants with Altered Bactericidal Activity. Applied and Environmental Microbiology, 1998. 64(6): p. 1997-2005.
24. Chikindas, M.L., et al., Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cells. Applied and Environmental Microbiology, 1993. 59(11): p. 3577-3584.
25. Herranz, C., et al., Enterocin P Selectively Dissipates the Membrane Potential of Enterococcus faeciumT136. Applied and Environmental Microbiology, 2001. 67(4): p. 1689-1692.
26. Quadri, L.E., et al., Chemical and genetic characterization of bacteriocins produced by Carnobacterium piscicola LV17B. Journal of Biological Chemistry, 1994. 269(16): p. 12204-12211.
27. Aymerich, T., et al., Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Applied and Environmental Microbiology, 1996. 62(5): p. 1676-82.
28. Nes, I.F., et al., Biosynthesis of bacteriocins in lactic acid bacteria. Antonie van Leeuwenhoek, 1996. 70(2): p. 113-128.
29. and, M.A.R. and J.E. Wertz, Bacteriocins: Evolution, Ecology, and Application. Annual Review of Microbiology, 2002. 56(1): p. 117-137.
30. Oppegård, C., et al., The Two-Peptide Class II Bacteriocins: Structure, Production, and Mode of Action. Journal of Molecular Microbiology and Biotechnology, 2007. 13(4): p. 210-219.
31. Cotter, P.D., C. Hill, and R.P. Ross, Bacteriocins: developing innate immunity for food. Nat Rev Micro, 2005. 3(10): p. 777-788.
32. Kemperman, R., et al., Identification and Characterization of Two Novel Clostridial Bacteriocins, Circularin A and Closticin 574. Applied and Environmental Microbiology, 2003. 69(3): p. 1589-1597.
33. Heng, N.C.K., et al., The Diversity of Bacteriocins in Gram-Positive Bacteria, in Bacteriocins: Ecology and Evolution, M.A. Riley and M.A. Chavan, Editors. 2007, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 45-92.
34. Konisky, J., Colicins and other Bacteriocins with Established Modes of Action. Annual Review of Microbiology, 1982. 36(1): p. 125-144.
35. Zajdel, J.K., P. Ceglowski, and W.T. Dobrazański, Mechanism of action of lactostrepcin 5, a bacteriocin produced by Streptococcus cremoris 202. Applied and Environmental Microbiology, 1985. 49(4): p. 969-974.
36. Breukink, E., et al., Use of the Cell Wall Precursor Lipid II by a Pore-Forming Peptide Antibiotic. Science, 1999. 286(5448): p. 2361-2364.
37. Cao, M., et al., Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilisσW and σM regulons. Molecular Microbiology, 2002. 45(5): p. 1267-1276.
38. Héchard, Y. and H.-G. Sahl, Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie, 2002. 84(5–6): p. 545-557.
39. Moll, G.N., W.N. Konings, and A.J.M. Driessen, Bacteriocins: mechanism of membrane insertion and pore formation, in Lactic Acid Bacteria: Genetics, Metabolism and Applications: Proceedings of the Sixth Symposium on lactic acid bacteria: genetics, metabolism and applications, 19–23 September 1999, Veldhoven, The Netherlands, W.N. Konings, O.P. Kuipers, and J.H.J.H. In ’t Veld, Editors. 1999, Springer Netherlands: Dordrecht. p. 185-198.
40. Salminen, S., et al., Demonstration of safety of probiotics — a review. International Journal of Food Microbiology, 1998. 44(1–2): p. 93-106.
41. Isolauri, E., et al., Probiotics: effects on immunity. The American Journal of Clinical Nutrition, 2001. 73(2): p. 444s-450s.
42. Mann, G.V. and A. Spoerry, Studies of a surfactant and cholesteremia in the Maasai. The American Journal of Clinical Nutrition, 1974. 27(5): p. 464-469.
43. Schiffrin, E.J., et al., Immune modulation of blood leukocytes in humans by lactic acid bacteria: criteria for strain selection. The American Journal of Clinical Nutrition, 1997. 66(2): p. 515S-520S.
44. Wollowski, I., G. Rechkemmer, and B.L. Pool-Zobel, Protective role of probiotics and prebiotics in colon cancer. The American Journal of Clinical Nutrition, 2001. 73(2): p. 451s-455s.
45. Tsai, T.-L., et al., Antimicrobial peptide m2163 or m2386 identified from Lactobacillus casei ATCC 334 can trigger apoptosis in the human colorectal cancer cell line SW480. Tumor Biology, 2015. 36(5): p. 3775-3789.
46. Gibson, G.R., A.L. McCartney, and R.A. Rastall, Prebiotics and resistance to gastrointestinal infections. British Journal of Nutrition, 2005. 93(SupplementS1): p. S31-S34.
47. Siitonen, S., et al., Effect of Lactobacillus GG Yoghurt in Prevention of Antibiotic Associated Diarrhoea. Annals of Medicine, 1990. 22(1): p. 57-59.
48. Prantera, C., et al., Ineffectiveness of probiotics in preventing recurrence after curative resection for Crohn's disease: a randomised controlled trial with Lactobacillus GG. Gut, 2002. 51(3): p. 405-409.
49. Nes, I.F., D.B. Diep, and H. Holo, Bacteriocin Diversity in Streptococcus and Enterococcus. Journal of Bacteriology, 2007. 189(4): p. 1189-1198.
50. Barefoot, S.F. and T.R. Klaenhammer, Detection and activity of lactacin B, a bacteriocin produced by Lactobacillus acidophilus. Applied and Environmental Microbiology, 1983. 45(6): p. 1808-1815.
51. Holo, H., O. Nilssen, and I.F. Nes, Lactococcin A, a new bacteriocin from Lactococcus lactis subsp. cremoris: isolation and characterization of the protein and its gene. Journal of Bacteriology, 1991. 173(12): p. 3879-3887.
52. Marugg, J.D., et al., Cloning, expression, and nucleotide sequence of genes involved in production of pediocin PA-1, and bacteriocin from Pediococcus acidilactici PAC1.0. Applied and Environmental Microbiology, 1992. 58(8): p. 2360-2367.
53. Kaur, S. and S. Kaur, Bacteriocins as Potential Anticancer Agents. Frontiers in Pharmacology, 2015. 6: p. 272.
54. Hanahan, D. and Robert A. Weinberg, Hallmarks of Cancer: The Next Generation. Cell, 2011. 144(5): p. 646-674.
55. Sand, S.L., et al., Plantaricin A, a cationic peptide produced by Lactobacillus plantarum, permeabilizes eukaryotic cell membranes by a mechanism dependent on negative surface charge linked to glycosylated membrane proteins. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2013. 1828(2): p. 249-259.
56. Zhao, H., et al., Interaction of the antimicrobial peptide pheromone Plantaricin A with model membranes: Implications for a novel mechanism of action. Biochimica et Biophysica Acta (BBA) - Biomembranes, 2006. 1758(9): p. 1461-1474.
57. Joo, N.E., et al., Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1. Cancer medicine, 2012. 1(3): p. 295-305.
58. Ramachandran, S., et al., Azurin synthesis from Pseudomonas aeruginosa MTCC 2453, properties, induction of reactive oxygen species, and p53 stimulated apoptosis in breast carcinoma cells. Journal of Cancer Science & Therapy, 2012. 2011.
59. Chen, Y.-C., et al., Anti-proliferative effect on a colon adenocarcinoma cell line exerted by a membrane disrupting antimicrobial peptide KL15. Cancer Biology & Therapy, 2015. 16(8): p. 1172-1183.
60. Abee, T., Pore-forming bacteriocins of Gram-positive bacteria and self-protection mechanisms of producer organisms. FEMS Microbiology Letters, 1995. 129(1): p. 1-9.
61. Hammami, R., et al., BACTIBASE: a new web-accessible database for bacteriocin characterization. BMC Microbiology, 2007. 7(1): p. 1-6.