研究生: |
陳嘉勻 Chen, Chia-Yun |
---|---|
論文名稱: |
隙環共振器的人工電磁特性之研究以及矽奈米線陣列的幾何形貌控制 Artificial Electromagnetic Responses in Split-ring Resonators and Morphological Control of Silicon Nanowire Arrays |
指導教授: |
嚴大任
Yen, Ta-Jen |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 81 |
中文關鍵詞: | 超穎材料 、隙環共振器 、人工電磁特性 、矽奈米線 、無電鍍金屬沈積法 |
外文關鍵詞: | metamaterials, split-ring resonators, artificial electromagnetic responses, silicon nanowires, electroless metal deposition |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超穎材料(metamaterials),為新一層級的人工電磁材料,係由單元尺寸小於入射光波長所組成的結構。超穎材料的性質源自於內部結構產生的集合響應,所展現出的光學以及物理特性是前所未見的,為天然材料所未有的性質。其中,隙環共振器(split-ring resonators)一直是最常設計來產生人工電磁特性的超穎材料。一般而言,其基態的響應行為是透過等效的電容-電感電路概念與以解釋。然而,此概念卻無法解釋隙環共振器所具有的多模態的響應行為。有鑑於此,我們提出了- 駐波式電漿共振響應模型 (standing-wave plasmonic resonance model)。透過此模型,我們得以對於其複數個響應的特性有完整而清楚的解釋,且更能利用此模型預估其所對應的響應波長。
接著,我們更進一步的由實驗探討入射光的電場偏極方向對於隙環共振器其響應之影響。透過定量的光譜量測以及表面電流分佈的模擬分析,我們證實了隙環共振器其響應是源自於水平以及垂直方向的電場激發。此外,我們也提出有別於傳統隙環共振器的設計-多隙環式共振器,實驗結果證實透過這種新穎的設計可任意調控其電性以及磁性的響應特性,藉此應用於奈米光子的整合性元件。最後,我們提出配對型的隙環共振器之設計,其中的非對稱性組合設計產生出的非對稱性耦合響應(asymmetrically coupled resonance, ACR),迥別於一般的隙環共振器所具有的響應行為。我們發現非對稱性耦合響應是來自於窄頻的subradiant模態以及寬頻的superradiant模態之間的強耦合效應,其響應行為可以經由改變兩隙環共振器的間距而得以調變。我們也發現,非對稱性耦合響應展現出極佳的靈敏度以及窄頻寬等特性,另外其施作上免標定且不需要搭配光學耦合元件的使用,即具有理想的感測優值(FOM),這意味著這種結構具有極大的潛能可應用於化學及生物方面的偵測。
除此之外,我們利用統計的方式以無電鍍金屬沈積法(statistical electroless metal deposition, SEMD),製備具有單晶、整齊排列以及大面積特性的矽奈米線陣列,並對於矽奈米線的方向、直徑以及長度等形貌加以控制。在三種不同晶面: (100)、(110) (111)的矽基板上所合成的矽奈米線,經過高解析穿透式電子影像、繞射圖案以及直角投影法等分析,證實了<100>為矽奈米線的優選生長方向。另外,矽奈米線的成長機制也透過矽晶格的結晶方位以及氫鍵結的鈍化效應而得以清楚的解釋。接著,我們採用了靜態田口方法,經由統計數據的分析我們不但得以控制奈米線的直徑分佈,且可以掌握反應參數對直徑控制的影響性。更進一步的,我們發現透過這種合成方式,矽奈米線的長度會隨著浸泡時間呈現線性的關係,且成長速率甚至高達1微米/分鐘。最後,量測結果顯示矽奈米線陣列具有極低的熱傳導係數,約僅有矽晶片的40%。總結來說,相較於其他合成方式下,我們所提出的統計處理無電鍍金屬沈積法具有出數個應用上的優勢,包含簡單而接近室溫環境的製程且免於催化劑/參雜等處理等,可望廣泛應用於奈米電子、奈米光電、奈米機電系統以及生物感測等的矽奈米線元件。
Metamaterials are a new class of artificial electromagnetic materials in which the size of building elements is smaller than the wavelength of illuminating light. Based on the collective resonances in the internal structures, metamaterials enable optical and physical properties which have not been presented in naturally existing materials. Among them, the split-ring resonator (SRR) remains the most common artificial structure and its fundamental resonant behaviors are conventionally understood by the equivalent LC circuit model. Nevertheless, the nature of multiple resonances in SRR still cannot be elucidated well. Thus, at first we reported the model of standing-wave plasmonic resonances. Such expression explicitly provides the universal model for the multiple resonances in SRR and additionally allows us to estimate the wavelength of multiple resonances.
Next, the dependence between the polarizations of incident wave and the resonant characteristics in SRR was experimentally investigated. The origin of these resonances can be elucidated by both quantitative spectroscopic measurements and the distribution of the simulated surface current density, indicating that the resonances of the SRR stem from the superposition of the horizontally and vertically electric excitations. In addition, we demonstrate scalable MSRRs which present the tailored electric and magnetic responses at desired frequencies, paving ways toward integrated nanophotonic applications. Finally, we introduce the coupling of plasmonic resonances in the SRR pairs, especially in the asymmetric one that supports an extraordinary electromagnetic response referred to as asymmetrically coupled resonance (ACR). By artificially mimicking the subradiant and superradiant modes in a plasmonic manner, we observe that the ACR response is excited in case of strong coupling between a narrow subradiant mode with a broad superradiant mode, and this ACR can be modulated by varying the spacing of two SRR constituents. The excitation of ACR is further associated with excellent sensitivity and narrow bandwidth, leading a remarkable optical sensing technique of freeing from label agents and optical couplers but possessing great values of FOM, to benefit practical applications of chemical and biological detection.
In addition, the synthesis of single-crystalline, well-aligned and large-area SiNW arrays with the morphological control of their orientations, diameters and lengths is demonstrated. We utilized a statistic electroless metal deposition method (SEMD) to synthesize SiNWs from three oriented Si (100), (110) and (111) substrates. The preferential crystallographic orientation of fabricating SiNWs is the <100> direction, proved by both TEM diffraction patterns and the orthographic projections on three oriented Si substrates. The formation mechanism of anisotropic SiNWs can be successfully elucidated in accordance with both the lattice configuration of oriented Si surfaces and the passivation effect on the H-terminated planes. The diameter control of SiNWs is achieved by employing the Taguchi methods, promising the capability of controlling the diameter with narrow distribution and comprehension of the influences from all process factors. The length of SiNWs presents fast (up to 1 □m/min) and linear dependence with the immersion time. Finally, the thermal conductivity of SiNW arrays was measured, showing about 40% of reduced values in comparison with bulk Si wafer. The SEMD technique reported here provides advantages such as almost room-temperature operation and catalyst/dopant free, paving a way towards the implementation of SiNW-based devices in nanoelectronics, nanoscale optoelectronics, nano-electro-mechanical systems, and biological detection.
Chapter 1
1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, J. Phys.: Condens. Matter 10, 4785 (1998).
4. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
5. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science 305, 788 (2004).
6. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
7. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, Science 303, 1494 (2004).
8. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, Science 306, 1351 (2004).
9. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
10. J. F. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, Appl. Phys. Lett. 88, 221103 (2006).
11. J. D. Baena, R. Marques, F. Medina, and J. Martel, Phys. Rev. B 69, 014402 (2004).
12. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, Appl. Phys. Lett. 84, 2943 (2004).
13. J. F. Zhou, T. Koschny, and C. M. Soukoulis, Opt. Express 15, 17881 (2007).
14. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, Phys. Rev. Lett. 96, 107401 (2006).
15. C. Y. Chen, S. C. Wu and T. J. Yen, Appl. Phys. Lett. 93, 034110 (2008).
16. M. Becker, V. Sivakov, G. Andra, R. Geiger, J. Schreiber, S. Hoffmann, J. Michler, A. P. Milenin, P. Werner, S. H. Christiansen, Nano Lett. 7, 75 (2007).
17. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C. M. Lieber, Nature 449, 885 (2007).
18. Y. Cui, Q. Q. Wei, H. K. Park, C. M. Lieber, Science 293, 1289 (2001).
19. Z. Li, B. Rajendran, T.I. Kamins, X. Li, Y. Chen, and R. Stanley Williams, Appl. Phys. A 80, 1257 (2005).
20. Y. Y. Wu, P. D. Yang, J. Am. Chem. Soc. 123, 3165 (2001).
21. H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, S. Q. Feng, Chem. Phys. Lett. 323, 224 (2000).
22. R. Q. Zhang, Y. Lifshitz, S. T. Lee, Adv. Mater. 15, 635 (2003).
23. Y. Wang, V. Schmidt, S. Senz, U. Gosele, Nature Nanotech. 1, 186 (2006).
24. J. D. Holmes, K. P. Johnston, R. C. Doty, B. A. Korgel, Science 287, 1471 (2000).
25. D. P. Yu, C. S. Lee, I. Bello, X. S. Sun, Y. H. Tang, G. W. Zhou, Z. G. Bai, Z. Zhang, S. Q. Feng, Solid State Commun. 105, 403 (1998).
Chapter 3
3.2 Experimental verification of standing-wave plasmonic resonances in split-ring resonators
1. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
3. J. F. Zhou, T. Koschny, L. Zhang, G. Tuttle, and C. M. Soukoulis, Appl. Phys. Lett. 88 221103 (2006).
4. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
5. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
6. N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
7. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, and N. I. Zheludev, Phys. Rev. E 72 056613 (2005).
8. J. N. Gollub, D. R. Smith, D, C. Vier, T. Perram, and J. J. Mock, Phys. Rev. B 71 195402 (2005).
9. T. Li, H. Liu, F. M. Wang, J. Q. Li, Y. Y. Zhu, and S. N. Zhu, Phys. Rev. E 76 016606 (2007).
10. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, Science 314, 977 (2006).
11. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, Science 305, 788 (2004).
12. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, Appl. Phys. Lett. 84, 2943 (2004).
13. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, and J. B. Pendry, Science 303, 1494 (2004).
14. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, and C. M. Soukoulis, Science 306, 1351 (2004).
15. N. Katsarakis, G. Konstantinidis, A. Kostopoulos, R. S. Penciu, T. F. Gundogdu, M. Kafesaki, E. N. Economou, T. Koschny, and C. M. Soukoulis, Opt. Lett. 30, 1348 (2005).
16. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95 203901 (2005).
17. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, Opt. Express, 14, 8827 (2006).
18. J. F. Zhou, T. Koschny, and C. M. Soukoulis Opt. Express, 24, 17881 (2007).
19. C. Rockstuhl, T. Zentgraf, H. Guo, N. Liu, C. Etrich, I. Loa, K. Syassen, J. Kuhl, F. Lederer, and H. Giessen, Appl. Phys. B, 84, 219 (2006).
20. M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 31, 1259 (2006).
21. A. K. Sheridan, A. W. Clark, A. Glidle, J. M. Cooper, and D. R. S. Cumming, Appl. Phys. Lett. 90, 143105 (2007).
22. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, J. Appl. Phys. 94, 4632 (2003).
23. G. Schider, J. R. Krenn, A. Hohenau, H. Ditlbacher, A. Leitner, F. R. Aussenegg, W. L. Schaich, I. Puscasu, B. Monacelli, and G. Boreman, Phys. Rev. B, 68, 155427 (2003).
24. F. Neubrech, T. Kolb, R. Lovrincic, G. Fahsold, A. Pucci, J. Aizpurua, T. W. Cornelius, M. E. Toimil-Molares, R. Neumann, and S. Karim, Appl. Phys. Lett. 89, 253104 (2006).
25. B. N. Khlebtsov, and N. G. Khlebtsov , J. Phys. Chem. C 111, 11516 (2007).
3.3 Control of polarization-dependent permittivity in split-ring resonators
1. V. Kildishev, W. S. Cai, U. K. Chettiar, H. K. Yuan, A. K. Sarychev, V. P. Drachev, and V. M. Shalaev, J. Opt. Soc. Am. B: Opt. Phys. 23, 423 (2006).
2. Y. Liu, N. Fang, D. Wu, C. Sun, and X. Zhang, Appl. Phys. A 87, 171 (2007).
3. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
4. C. Y. Chen, S. C. Wu and T. J. Yen, Appl. Phys. Lett. 93, 034110 (2008).
5. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
3.4 Electric and magnetic responses in the multiple-split ring resonators
1. V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
2. R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001).
3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, IEEE Trans. Microwave Theory Tech. 47, 2075 (1999).
4. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Phys. Rev. Lett. 76, 4773 (1996).
5. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, J. Phys.: Condens. Matter 10, 4785 (1998).
6. A. A. Houck, J. B. Brock, and I. L. Chuang, Phys. Rev. Lett. 90, 137401 (2003).
7. N. Seddon, and T. Bearpark, Science 302, 1537 (2003).
8. J. Lu, T. M. Grzegorczyk, Y. Zhang, J. Pacheco, B. I. Wu, J. A. Kong, and M. Chen, Opt. Express 11, 723 (2003).
9. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
10. N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
11. K. Aydin, I. Bulu, and E. Ozbay, Appl. Phys. Lett 90, 254102 (2007).
12. J. D. Baena, R. Marques, F. Medina, and J. Martel, Phys. Rev. B 69, 014402 (2004).
13. T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, Science 303, 1494 (2004).
14. M. W. Klein, C. Enkrich, M. Wegener, C. M. Soukoulis, and S. Linden, Opt. Lett. 31, 1259 (2006).
15. J. Zhou, T. Koschny, M. Kafesaki, E. N. Economou, J. B. Pendry, and C. M. Soukoulis, Phys. Rev. Lett. 95, 223902 (2005).
16. C. M. Soukoulis, T. Koschny, J. F. Zhou, M. Kafesaki, and E. N. Economou, Phys. Stat. Sol. (b) 244, 1181 (2007).
17. K. Aydin, I. Bulu, K. Guven, M. Kafesaki, C. M. Soukoulis, and E. Ozbay, New J. Phys. 7, 168 (2005).
18. R. S. Penciu, K. Aydin, M. Kafesaki, T. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, Opt. Express 16, 18131 (2008).
19. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, Appl. Phys. Lett. 84, 2943 (2004).
20. S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, and C. M. Soukoulis, Science 306, 1351 (2004).
21. C. Rockstuhl, F. Lederer, C. Etrich, T. Zentgraf, J. Kuhl, and H. Giessen, Opt. Express 14, 8827 (2006).
22. J. F. Zhou, T. Koschny, and C. M. Soukoulis, Opt. Express 15, 17881 (2007).
23. C. Y. Chen, S. C. Wu, and T. J. Yen, Appl. Phys. Lett. 93, 034110 (2008).
24. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
25. J. Aizpurua, G. W. Bryant, L. J. Richter, F. J. G. de Abajo, B. K. Kelley, and T. Mallouk, Phys. Rev. B 71, 235420 (2005).
26. N. Liu, H. C. Guo, L. W. Fu, S. Kaiser, H. Schweizer, and H. Giessen, Adv. Mater. 19, 3628 (2007).
27. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, Nano Lett. 8, 2171 (2008).
Chaper 4
4.2 Plasmonic couplings in symmetric and asymmetric SRR pairs
1. J. D. Baena, R. Marques, F. Medina, and J. Martel, Phys. Rev. B 69, 014402 (2004).
2. V. A. Fedotov, M. Rose, S. L. Prosvirnin, N. Papasimakis, and N. I. Zheludev, Phys. Rev. Lett. 99, 147401 (2007).
3. Z. M. Huang, J. Q. Xue, Y. Hou, J. H. Chu, and D. H. Zhang, Phys. Rev. B 74, 193105 (2006).
4. A. Christ, O. J. F. Martin, Y. Ekinci, N. A. Gippius, and S. G. Tikhodeev, Nano Lett. 8, 2171 (2008).
5. F. Hao, P. Nordlander, Y. Sonnefraud, P. Van Dorpe, and S. A. Maier, ACS Nano 3, 643 (2009).
6. U. Fano, " Phys. Rev. 124, 1866 (1961).
7. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J. F. Zhou, T. Koschny, and C. M. Soukoulis, Phys. Rev. Lett. 95, 203901 (2005).
8. A. Wokaun, J. P. Gordon, and P. F. Liao, Phys. Rev. Lett 48, 957 (1982).
9. C. Novo, D. Gomes, J. P. Juste, Z. Y. Zhang, H. Petrova, and G. V. Hartland, Phys. Chem. Chem. Phys. 8, 3540 (2006).
10. Y. Yuan, C. Bingham, T. Tyler, S. Palit, T. H. Hand, W. J. Padilla, D. R. Smith, N. M. Jokerst, and S. A. Cummer, Opt. Express 16, 9746 (2008).
11. D. Schurig, J. J. Mock, and D. R. Smith, Appl. Phys. Lett. 88, 041109 (2006).
12. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, Science 302, 419 (2003).
13. H. C. Guo, N. Liu, L. W. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, Opt. Express 15, 12095 (2007).
14. D. R. Smith, S. Schultz, P. Markos, and C. M. Soukoulis, Phys. Rev. B 65, 195104 (2002).
15. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, Phys. Rev. Lett. 101, 047401 (2008).
16. P. Tassin, L. Zhang, T. Koschny, E. N. Economou, and C. M. Soukoulis, Phys. Rev. Lett. 102, 053901 (2009).
17. N. Liu, S. Kaiser, and H. Giessen, Adv. Mater. 20, 4521 (2008).
18. J. F. O’Hara, R. Singh, I. Brener, E. Smirnova, J. Han, A. J. Taylor, and W. Zhang, Opt. Express 16, 1786 (2008).
19. L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, and Y. N. Xia, Nano Lett. 5, 2034 (2005).
Chapter 5
5.2 Morphological control of single crystalline silicon nanowire arrays at near-room temperatures
1. G. T.A. Kovacs, Micromachined transducers sourcebook, McGraw-Hill Companies, Inc. (2000).
2. L. Pavesi, Materialstoday 8, 18 (2005).
3. D. P. Yu, Z. G. Bai, J. J. Wang, Y. H. Zou, W. Qian, J. S. Fu, H. Z. Zhang, Y. Ding, G. C. Xiong, L. P. You, J. Xu, S. Q. Feng, Phys. Rev. B 59, R2498 (1999).
4. M. Becker, V. Sivakov, G. Andra, R. Geiger, J. Schreiber, S. Hoffmann, J. Michler, A. P. Milenin, P. Werner, S. H. Christiansen, Nano Lett. 7, 75 (2007).
5. a) O. Boyraz, B. Jalali, Opt. Express 2004, 12, 5269. b) H. S. Rong, R. Jones, A. S. Liu, O. Cohen, D. Hak, A. Fang, M. Paniccia, Nature 433, 725 (2005).
6. M. A. Green, Sol. Energy 74, 181 (2003).
7. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C. M. Lieber, Nature 449, 885 (2007).
8. Y. Cui, Q. Q. Wei, H. K. Park, C. M. Lieber, Science 293, 1289 (2001).
9. K. Q. Peng, Y. J. Yan, S. P. Gao, J. Zhu, Adv. Mater. 14, 1164 (2002).
10. K. Q. Peng, J. J. Hu, Y. J. Yan, Y. Wu, H. Fang, Y. Xu, S. T. Lee, J. Zhu, Adv. Funct. Mater. 16, 387 (2006).
11. K. Q. Peng, H. Fang, J. J. Hu, Y. Wu, J. Zhu, Y. J. Yan, S. Lee, Chem. Eur. J. 12, 7942 (2006).
12. Y. Y. Wu, P. D. Yang, J. Am. Chem. Soc. 123, 3165 (2001).
13. H. F. Yan, Y. J. Xing, Q. L. Hang, D. P. Yu, Y. P. Wang, J. Xu, Z. H. Xi, S. Q. Feng, Chem. Phys. Lett. 323, 224 (2000).
14. R. Q. Zhang, Y. Lifshitz, S. T. Lee, Adv. Mater. 15, 635 (2003).
15. Y. Wang, V. Schmidt, S. Senz, U. Gosele, Nature Nanotech. 1, 186 (2006).
16. S. P. Ge, K. L. Jiang, X. X. Lu, Y. F. Chen, R. M. Wang, S. S. Fan, Adv. Mater. 17, 56 (2005).
17. J. D. Holmes, K. P. Johnston, R. C. Doty, B. A. Korgel, Science 287, 1471 (2000).
18. D. P. Yu, C. S. Lee, I. Bello, X. S. Sun, Y. H. Tang, G. W. Zhou, Z. G. Bai, Z. Zhang, S. Q. Feng, Solid State Commun. 105, 403 (1998).
19. R. L. Smith, S. D. Collins, J. Appl. Phys. 71, R1 (1992).
20. V. Lehmann, J. Electrochem. Soc. 140, 2836 (1993).
21. S. F. Chuang, S. D. Collins, R. L. Smith, Appl. Phys. Lett. 55, 675 (1989).
22. M. Christophersen, J. Carstensen, A. Feuerhake, H. Foll, Mater. Sci. Eng. B 69, 194 (2000).
23. M. Christophersen, J. Carstensen, S. Ronnebeck, C. Jager, W. Jager, H. Foll, J. Electrochem. Soc. 148, E267 (2001).
24. Z. Li, B. Rajendran, T. I. Kamins, X. Li, Y. Chen, R. S. Williams, Appl. Phys. A 80, 1257 (2005).
25. Z. P. Huang, H. Fang, J. Zhu, Adv. Mater. 19, 744 (2007).
26. G. S. Peace, Taguchi Methods: A Hands-On Approach, Addison-Wesley, Reading, MA (1993).
5.3 Low thermal conductivity of ultra-long SiNW arrays with rough surface
1. B. Tian, X. Zheng, T. J. Kempa, Y. Fang, N. Yu, G. Yu, J. Huang and C. M. Lieber, Nature 449, 885 (2007).
2. A. I. Boukai, Y. Bunimovich, J. T. Kheli, J. K. Yu, W. A. Goddard, and J. R. Heath, Nature 451, 168 (2008).
3. I. Hochbaum1, R. Chen, R. D. Delgado, W. Liang, E. C. Garnett, M. Najarian, A. Majumdar, and Peidong Yang, Nature, 451, 163 (2008).
4. W. II Park, G. Zheng, X. Jiang, B. Tian, and C. M. Lieber, Nano Lett. 8, 3004 (2008).
5. Y. Shi, Q. Hu, H, Araki, H. Suzuki, H. Gao, W. Yang, and T. Noda, Appl. Phys. A 80, 1733 (2005).
6. W. H. Shi, H. Y. Peng, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, Adv. Mater. 12, 1343 (2000).