研究生: |
陳謙 Chen, Chien |
---|---|
論文名稱: |
p-GaN/AgTi、p-GaN/AgCo與p-GaN/AgNi 光反射式歐姆電極光電特性與熱穩定性之研究 Study of Optoelectric Properties and Thermal Stability of p-GaN/AgTi, p-GaN/AgCo, and p-GaN/AgNi Optical Reflective Ohmic Contact |
指導教授: |
黃倉秀
Huang, Tsung-Shiew |
口試委員: |
黃金花
Huang,Jin Hua 洪慧芬 Hong,Hui Fen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 121 |
中文關鍵詞: | 反射式歐姆電極 、光電特性 、熱穩定性 |
外文關鍵詞: | AgTi, AgCo, AgNi |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於藍光覆晶式發光二極體之光反射式歐姆電極而言,純Ag之藍光反射率最為優秀,但純Ag與p-GaN間附著性差,更會在退火後凝縮(agglomeration)成島嶼狀結構,導致光電性質的劣化。本論文以雙電子槍蒸鍍系統製備p-GaN的光反射式歐姆電極AgTi(4 at%)、AgTi(2 at%)、Ti(2nm)/Ag(150nm)、AgCo(5 at%)、AgCo(2 at%)、Co(2nm)/Ag(150 nm)及AgNi(2 at%)等七組試片,旨在研究不同合金成分的添加以及爐管退火(FA)與快速退火(RTA)兩種退火方式,對於AgTi、AgCo與AgNi合金光反射式歐姆電極光電特性的影響。探討內容包含歐姆電極的光反射率、金屬薄膜片電阻與特徵接觸電阻,以及各性質之熱穩定性,並使用掃描式電子顯微鏡觀察試片表面樣貌,分析不同合金成分的特性差異及抑制退火後Ag薄膜凝聚的效果。結果顯示合金試片中,添加2 at%的Ti、Co或Ni即可有效抑制Ag薄膜的退火凝聚現象,並可得到良好的藍光反射率、金屬薄膜片電阻及特徵接觸電阻,但隨著添加元素成分的增加,將使其藍光反射率下降與特徵接觸電阻上升,其中AgCo(5 at%)在經時效熱穩定性測試中,產生Ag的側向擴散,導致漏電流的形成。綜合考量光反射率、金屬薄膜片電阻、特徵接觸電阻與熱穩定性,AgCo(2 at%)與AgNi(2 at%)合金作為p-GaN覆晶式LED歐姆電極皆有相當優異的表現。AgCo(2 at%)與AgNi(2 at%)合金在石英爐管內,於大氣環境下進行500℃退火10分鐘後,可以於460 nm具有94%與92%的光反射率,金屬薄膜片電阻約為0.5 Ω/□,特徵接觸電阻分別為3.4 × 10-4 Ω-cm2與1.1 × 10-4 Ω-cm2,且各性質皆有良好的熱穩定性。
This thesis study about optoelectric properties and thermal stability of p-GaN reflective ohmic contacts Ti (2nm) / Ag (150nm), AgTi (2 at%), AgTi (4 at%), Co(2nm) / Ag (150nm), AgCo (2 at%), AgCo(5 at%) and AgNi(2 at%) seven specimens which are prepared by due electron guns evaporation.We discuss the effect, including light reflectivity, sheet resistance of the metal thin film, specific contact resistance and thermal stability, on the optoelectric properties of AgTi, AgCo and AgNi alloy reflective ohmic contacts, be influenced by different alloy composition, different annealing methods, including furnace annealing and rapid thermal annealing.The result show annealed AgCo(2 at%) and AgNi(2 at%) could suppress the agglomeration of Ag film. The specific contact resistance was 3.4 × 10-4 and 1.1 × 10-4 Ω-cm2 , reflectance was 94% and 92% at 460 nm, and sheet resistance of metal film was both 0.5 Ω/□ for annealed AgCo(2 at%) and AgNi(2 at%) at 500℃ in air ambient for 10 min. Both AgCo(2 at%) and AgNi(2 at%) reflective ohmic contacts showed good thermal stability.
1. S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Jpn. J. Appl. Phys. Part 2 34, L797 (1995).
2. S. Nakamura, T. Mokia, and M. Senoh, Appl. Phys. Lett. 64, 1689 (1994).
3. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyodo, Appl. Phys. Lett. 70, 868 (1996).
4. H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, “Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer,” Appl. Phys. Lett. 48, 353 (1986).
5. S. Nakamura, “GaN growth using GaN buffer layer,” Jpn. J. Appl. Phys. 30, L1705 (1991).
6. H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI),” Jpn. J. Appl. Phys. 28 , L2112 (1989).
7. S. Nakamura, M. Senoh, and T. Mukai, “Highly p-typed Mg-doped GaN films grown with GaN buffer layers,” Jpn. J. Appl. Phys. 30, L1708 (1991).
8. 楊承叡,p-GaN/Ni/Ag/Al反射式歐姆電極之光電特性與熱穩定性研究,國立清華大學材料科學工程學系碩士學位論文,(2009)。
9. 張佑銜、劉正毓,發光二極體的封裝技術,科學發展,(2009)。
10. Z. Fan, S. N. Mohammad, W. Kim, O. Aktas, A. E. Botchkarev, and H. Morkoc, “Very low resistance multilayer Ohmic contact to n‐GaN,” Appl. Phys. Lett. 68, 1672 (1996).
11. S. J. Cai, R. Li, Y. L. Chen, L. Wong, W. G. Wu, S. G. Thomas, and K. L. Wang, “High performance AlGaN/GaN HEMT with improved ohmic contacts,” Electron. Lett. 34, 2354 (1998).
12. J. D. Guo, C. I. Lin, M. S. Feng, G. C. Chi, and C. T. Lee, Appl. Phys. Lett. 68, “A bilayer Ti/Ag ohmic contact for highly doped n-type GaN films,” 235 (1996).
13. B. P. Luther, S. E. Mohney, T. N. Jackson, M. A. Khen, Q. Chen, and J. W. Yang, “Investigation of the mechanism for Ohmic contact formation in Al and Ti/Al contacts to n-type GaN,” Appl. Phys. Lett. 70, 57 (1997).
14. A. Y. C. Yu, “Electron tunneling and contact resistance of metal-silicon contact barriers,” Solid State Electron. 13, 239 (1970).
15. C. Y. Chang, Y. K. Fang, and S. M. Sze, “Specific contact resistance of metal-semiconductor barriers,” Solid State Electron. 14, 541 (1971).
16. S. M. Sze, Physics of Semiconductor Devices (Wiley, New York), p.245, 1981.
17. T. V. Blank and Yu. A. Gol’dberg, “Mechanisms of current flow in metal-semiconductor ohmic contact,” Semiconductors, vol. 41, 1263-1292, (2007)
18. J. O. Song, J. S. Ha, and T. Y. Seong, “Ohmic-contact technology for GaN-based light-emitting diodes: role of p-type contact,” IEEE Trans. Electron Devices 57, 42 (2010).
19. F. A. Padovani, and R. Stratton, “Field and thermionic-field emission in Schottky barriers,” Solid State Electron. 9, 695 (1966).
20. C. R. Crowell, and V. L. Rideout, “Normalized thermionic-field (TF) emission in metal-semiconductor (Schottky) barriers,” Solid State Electron. 12, 89 (1969).
21. R. Stratton, and F. A. Padovani, “Differential resistance peaks of Schottky barrier diodes,” Solid State Electron. 10, 813 (1967).
22. 科豐國際有限公司,第一章 四點探針 電阻量測。
23. 尤仁弘,應用地電阻影像法於壩體潛在滲漏調查之研究,國立交通大學土木工程學系碩士學位論文,2006年。
24. John Wiley, Sons, Semiconductor material and device characterization, p.144, 2006
25. G. S. Marlow, and M. B. Das, “The Effects of Contact Size and Non-Zero Metal Resistance on the Determination of Specific Contact Resistance,” Solid State Electron. 25, 91 (1982).
26. Cohen, Simon S, Metal-semiconductor contacts and devices, p.122, 1986.
27. J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise,G.Christenson, Y.C. Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Götz,N. F. Gardner, R. S. Kern, and S. A. Stockmam, “High-power AlGaInN flip-chip light-emitting diodes,” Appl. Phys. Lett. 78, 3379 (2001).
28. W. S. Chen, S. C. Shei, S. J. Chang, Y. K. Su, W. C. Lai, C. H. Kuo, Y. C. Lin, C. S. Chang, T. K. Ko, Y. P. Hsu, and C. F. Shen, “Rapid thermal annealed InGaN/GaN flip-chip LEDs,” IEEE Trans. Electron Devices. 53, 32 (2006).
29. 李正中,薄膜光學與鍍膜技術,藝軒圖書出版社,(2002),144頁。
30. J. O. Song, J. S. Kwak, Y. Park, and T. Y. Seong, “Ohmic and degradation mechanisms of Ag contacts on p-type GaN,” Appl. Phys. Lett. 86, 062104 (2005).
31. J. Y. Kim, S. I. Na, G. Y. Ha, M. K. Kwon, I. K. Park, J. H. Lim, and S. J. Park, “Thermally stable and highly reflective AgAl alloy for enhancing light extraction efficiency in GaN light-emitting diodes,” Appl. Phys. Lett. 88, 043507 (2006).
32. H. G. Hong, J. O. Song, T. Lee, I. T. Ferguson, J. S. Kwak, and T. Y. Seong, “Improvement of the reverse leakage behavior of Ag-based ohmic contacts for GaN-based light-emitting diodes using MgZnO interlayer,” Mater. Sci, Eng. B. 129, 176 (2006).
33. J. O. Song, J. S. Ha, and T. Y. Seong, “Ohmic-contact technology for GaN-based light-emitting diodes: role of p-type contact,” IEEE Trans. Electron Devices 57, 42 (2010).
34. Y. Ohba, and A. Hatano, “H-atom incorporation in Mg-doped GaN grown by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys. 33, L1367 (1994)
35. I. Waki, H. Fujioka, M. Oshima, H. Miki and A. Fukizawa, “Low-temperature activation of Mg-doped GaN using Ni films,” Appl. Phys. Lett. 78, 2899 (2001).
36. I. Waki, H. Fujioka, M. Oshima, H. Miki, M. Okuyama, “Low-temperature activation of Mg-doped GaN with thin Co and Pt films,” Appl. Surface Science, 190, 339-342, (2002)
37. J. K. Kim, J. L. Lee, J. W. Lee, H. E. Shin, Y. J. Park, and T. Kim, “Low resistance Pd/Au ohmic contacts to p-type GaN using surface treatment,” Appl. Phys. Lett. 73, 2953 (1998).
38. J. Sun, K. A. Rickert, J. M. Redwing, A. B. Ellis, F. J. Himpsel, and T. F. Kuech, “p-GaN surface treatments for metal contacts,” Appl. Phys. Lett. 76, 415 (2000).
39. H. Ishikawa, S. Kobayashi, Y. Koide, S. Yamasaki, S. Nagai, J. Umezaki, M. Koike, and M. Murakami, “Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces,” J. Appl. Phys. 81, 1315 (1997).
40. D. S. Zhao, S. M. Zhang, L. H. Duan, Y. T. Wang, D. S. Jiang, W. B. Liu, B. S. Zhang, and H. Yang, “Effects of Ag on Electrical Properties of Ag/Ni/p-GaN Ohmic Contact,” Phys. Lett. 24, 1741 (2007).
41. H. W. Jang, and J. L. Lee, “Mechanism for ohmic contact formation of Ni/Ag contacts on p-type GaN,” Appl. Phys. Lett. 85, 5920 (2004).
42. J. Cho, H. Kim, Y. Park, and E. Yoon, “Effects of p-electrode reflectivity on extraction efficiency of nitride-based light-emitting diodes,” Appl. Phys. Expr. 1, 052001 (2008).
43. H. W. Jang, and J. L. Lee, “Low-resistance and high-reflectance Ni Ag Ru Ni Au ohmic contact on p -type GaN,” Appl. Phys. Lett. 85, 4421 (2004).
44. K. Y. Ban, H. G. Hong, D. Y. Noh, T. Y. Seong, J. O. Song, and D. Kim, “Use of an indium zinc oxide interlayer for forming Ag-based Ohmic contacts to p-type GaN for UV-light-emitting diodes,” Semicond. Sci. Technol. 20, 921 (2005).
45. H. G. Hong, K. Y. Ban, J. O. Song, J. Cho, Y. Park, J. S. Kwak, I. T. Ferguon, and T. Y. Seong, “High quality tin zinc oxide/Ag ohmic contacts for UV flip-chip light-emitting diodes,” Phys. Stat. Sol. (c)3, 2133 (2006).
46. J. O. Song, J. S. Kwak, and T. Y. Seong, “Cu-doped indium oxide/Ag ohmic contacts for high-power flip-chip light-emitting diodes,” Appl. Phys. Lett. 86, 062103 (2005).
47. J. Y. Kim, S. I. Na, G. Y. Ha, M. K. Kwon, I. K. Park, J. H. Lim, and S. J. Park, “Thermally stable and highly reflective AgAl alloy for enhancing light extraction efficiency in GaN light-emitting diodes,” Appl. Phys. Lett. 88, 043507 (2006).
48. J. H. Son, G. H. Jung, and J. L. Lee, “Enhancement of light reflectance and thermal stability in Ag–Cu alloy contacts on p -type GaN,” Appl. Phys. Lett. 93, 012102 (2008).
49. H. Kim, K. H. Baik, J. Cho, J. W. Lee, S. Yoon, H Kim, S. N Lee, C. Sone, Y. Park, and T. Y. Seong, “High-reflectance and thermally stable AgCu alloy p-type reflectors for GaN-based light-emitting diodes,” IEEE Phot. Tech. Lett. 19, 336 (2007).
50. J. H. Son, G. H. Jung, and J. L. Lee, “Highly reflective Ag–Cu alloy-based ohmic contact on p-type GaN using Ru overlayer,” Opt. Lett. 33, 2907 (2008).
51. R. Kawai, T. Mori, W. Ochiai, A. Suzuki, M Iwaya, H. Amano, S. Kamiyama, and I. Akasaki, “High-reflectivity Ag-based p-type ohmic contacts for blue light-emitting diodes,” Phys. Status Solidi C. 6, S830 (2009).
52. Y. H. Song, J. H. Son, G. H. Jung, and J. L. Lee, “Effects of Mg Additive on Inhibition of Ag Agglomeration in Ag-Based Ohmic Contacts on p-GaN,” Electrochm. Solid-State Lett. 13, H173 (2010)
53. G. H. Jung, J. H. Son, Y. H. Song, and J. L. Lee, “Strain induced suppression of silver agglomeration of indium-containing silver contact,” Appl. Phys. Lett. 96, 201904 (2010).
54. B. Y. Cheng, I. C. Chen, C. H. Kuo, and L. C. Chang, “High Reflectance Contacts to P-type GaN Using Ag-La Alloys,” ECS Transactions. 44, 1285 (2012).
55. Fukai, Yuh, “The metal-hydrogen system : basic bulk properties,” ,1993.
56. Herbert B. Michaelson, “The work function of the elements and its periodicity,” J. Appl. Phys. 48, 4729, (1977).
57. Se-Yeon Jung, Sang Youl Lee, June-O Song, Sungho Jin, and Tae-Yeon Seong, “Improved light output of GaN-based light-emitting diodes by using AgNi reflective contacts,” Journal of Electronic Materials, 40, 11, (2011).
58. 林威浩,p-GaN/AgSn與p-GaN/AgCu反射式歐姆電極光電特性與熱穩定性之研究,國立清華大學材料科學工程學系碩士學位論文,(2015)。
59. 張寶鑫,p-GaN/AgSb與p-GaN/AgMn反射式歐姆電極光電特性與熱穩定性之研究,國立清華大學材料科學工程學系碩士學位論文,(2015)。