簡易檢索 / 詳目顯示

研究生: 張淑閔
Sue-min Chang
論文名稱: 溶膠-凝膠法製備之二氧化鋯薄膜其化學組成相依之微結構及電子結構之研究
The Chemical-composition-dependent Microstructures and Electronic Structures of Sol-gel-derived ZrO2 Films
指導教授: 董瑞安
Ruey-an Doong
口試委員:
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2004
畢業學年度: 93
語文別: 英文
論文頁數: 172
中文關鍵詞: 二氧化鋯溶膠-凝膠薄膜結晶能隙
外文關鍵詞: ZrO2, Sol-gel, Thin film, Crystalline property, Band gap
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要

    二氧化鋯及金屬參雜的二氧化鋯薄膜是具有高發展潛力性的材料,其特殊的物化性質使得此類材料廣泛地應用於各種領域中。二氧化鋯相關材料的物化性質及其應用效能主要取決於微結構及電子結構,而鍛燒處理已被證明對微結構及電子結構有重要的影響,可能原因與鍛燒改變了二氧化鋯的晶體缺陷及其相關的化學組成有關,然而,對於二氧化鋯系統性的定性及定量分析以闡明鍛燒條件對微結構及電子結構的影響機制卻尚未完整。因此,本研究主要目的在建立不同的鍛燒條件下二氧化鋯與金屬參雜的二氧化鋯的化學組成(包括O/Zr比例、Zr-O及Zr-OH的含量以及Zr物種變化)與微結構及電子結構的相關性,並藉由化學組成的變化解釋在不同鍛燒條件下二氧化鋯及金屬參雜的二氧化鋯微結構及電子結構的轉變機制。由於溶膠-凝膠法可簡單合宜地調控薄膜的型態及厚度,本研究將以溶膠-凝膠製備之二氧化鋯薄膜為樣本進行分析討論。
    在微結構性質部分,二氧化鋯在空氣鍛燒下於80-950°C間進行非晶相®介穩態-正方晶®單斜晶的轉變,在氮氣下鍛燒則進行非晶相®介穩態-正方晶®單斜晶®介穩態-正方晶的轉變。在結晶過程中,薄膜表面及內部氫氧基的減少、低價數鋯物種的產生以及低於化學劑量比的O/Zr比例說明熱處理過程中去氫氧化的結果造成四價鋯的還原同時導入氧空缺(oxygen vacancies)而穩定了正方晶在低於其熱力學溫度下存在。在由正方晶轉為單斜晶的過程中,表面氫氧基的減少以及內部O/Zr比於晶相轉換完成時趨近於劑量比的現象說明了晶相轉變誘發於表面氫氧基提供氧離子填補氧空缺。比較性而言,介穩態-正方晶在空氣鍛燒下的穩定性低於在氮氣鍛燒下的狀態,藉由表面增加的氫氧基可說明空氣中的水及氧提供額外的氧來源以促使晶相轉變的發生。在450-600°C的氮氣及850-950°C的氧氣鍛燒下,介穩態-正方晶及單斜晶的晶粒隨溫度增加而減小,同時,二氧化鋯內部的O/Zr比也隨之減少,此現象意指氧空缺及低價鋯離子的離析幫助介穩態-正方晶及單斜晶在漸增的溫度下穩定性,單斜晶只穩定在O/Zr為劑量比的情形下,而最高及最低可穩定介穩態-正方晶的O/Zr分別為1.98 及1.63。
    二氧化鋯的微結構及及化學組成主導了其能帶結構與能隙在不同鍛燒條件下的改變。溶膠-凝膠製備之二氧化鋯薄膜具有直接能帶、間接能帶以及能帶尾的結構,由於能帶尾的結構在O/Zr ³ 2 時測得,意指其形成主要在於不完美的結晶排列,另一方面,間接能帶在O/Zr < 2 時測得,意指其形成主要在於晶體缺陷。二氧化鋯非晶相及介穩態-正方晶的直接能隙介於5.90-6.12及532.-5.74 eV間,而單斜晶具有兩個直間能隙其分別介於5.87-6.00及4.89-5.08 eV 間,而非晶相、介穩態-正方晶及單斜晶的間接能隙則分別介於5.01-5.47、4.77-5.40及4.82-5.10 eV間。在空氣鍛燒下,直接能隙受量子效應影響其值隨晶粒增大而減小,而在氮氣鍛燒下,直接與間接能隙皆受晶體缺陷多寡的影響隨O/Zr比例減小而變小。
    鍛燒對參雜七種過渡金屬離子(包括Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu+, and Zn2+)的二氧化鋯微結構及電子結構的影響主要亦基於參雜金屬化學價態的改變。鍛燒的去氫氧化、去氧化及由表面氫氧基獲取氧離子的過程還原或氧化了所添加的過渡金屬離子。由於金屬離子價態轉變後與Zr4+離子半徑有不同相對大小的關係,因此轉變後的化學價態的決定了晶面的面距(d-spacings)、晶粒的大小、優選晶面(preferred orientation)及晶相的轉變,而由於不同的電子組態,轉變後的化學價態決定不純物在二氧化鋯能帶間的能階位置及二氧化鋯的能隙大小。過渡金屬在二氧化鋯基質中的氧化還原特性與其d軌域之電子組態有關,過渡金屬具有d5或d10電子組態者(如Mn2+, Fe3+, Cu+,及Zn2+)具有高穩定性能阻絕低溫鍛燒(~550 °C)時去氫氧化所引發的還原反應,然而高溫引發的去氧化可提供更高的還原力,因此這類過渡金屬在高溫鍛燒後(~950°C)將繼續還原成低價的物種。
    總體言之,鍛燒引發的氧化及還原反應改變二氧化鋯及金屬參雜之二氧化鋯的化學組成,因而決定二氧化鋯及金屬參雜之二氧化鋯在不同鍛燒條件下微結構及電子結構的變化。


    Abstract
    Zirconium dioxide (ZrO2) and metal-doped ZrO2 films are promising materials for various advanced applications because of their special physicochemical properties. Microstructures and electronic structures play important roles in governing the physicochemical properties as well as the performance of ZrO2. Calcination conditions have shown to greatly influence the microstructures and electronic structures of ZrO2. Such influence is associated with changes in lattice defects and related chemical compositions. However, the qualitative and quantitative analyses of chemical compositions for elucidating the influence of calcination conditions on the microstructures and electronic structures of pure and doped ZrO2 is little addressed. In this study, the chemical compositions, including O/Zr ratios, contents of Zr-O and Zr-OH, contents and distribution of Zr species, of ZrO2 films with respect to their microstructures and electronic structures after calcination in air and in N2 were thoroughly examined. Moreover, the mechanisms of conversion of the microstructures and electronic structures in the pure ZrO2 and doped ZrO2 films under different calcination conditions are proposed based on the chemical compositions. A sol-gel method was used for preparing ZrO2 films in this study because it is simple and feasible to control the morphologies and thicknesses of films to satisfy the requirement of the samples for this study.
    The phase transformation of the sol-gel-derived ZrO2 films was amorphous ® m-tetragonal ® monoclinic in air, while the evolution followed the sequence was amorphous ® m-tetragonal ® monoclinic ® m-tetragonal in N2 at 80-950 °C. During crystallization, the decrease in surface and lattice hydroxyl groups, generation of low-valent Zr species, and decrease in bulk O/Zr ratios to non-stoichiometry (< 2) prove that dehydroxylation reduced Zr4+ to low-valent states and introduced oxygen vacancies to stabilize tetragonal phase at temperatures than its thermodynamic temperatures (~ 1200 °C). When the m-tetragonal phase converted to the monoclinic phase, surface hydroxyl groups also decreased. Afterward, the bulk O/Zr ratios approach stoichiometry (~ 2) when the phase transformation was almost completed. These observations clearly show that the compensation of oxygen vacancies from surface hydroxyl groups, which play the role of O2- donor, triggers the m-tetragonal-to-monoclinic phase transformation. Comparatively, the m-tetragonal phase has lower stability against temperatures in air than in N2. The increase in the surface hydroxyl groups on the ZrO2 films calcined in air depicts that the dissociation of water and O2 on the surface accelerates the phase transformation. When ZrO2 films were calcined at 450-600 °C in N2 or 850-950 °C in air, crystallite sizes of the m-tetragonal phase and the monoclinic phase decreased with increasing temperatures. Meanwhile, bulk O/Zr ratios also decreased. These phenomena show that segregation of oxygen vacancies as well as reduced Zr species occurs to stabilize the m-tetragonal phase and the monoclinic phase. The minimal and maximal O/Zr ratios for the stabilization of the m-tetragonal phase were 1.63 and 1.98, respectively, while the monoclinic phase is only stable at stoichiometry.
    The changed microstructures and O/Zr ratios dominate the band structures and band gaps of the sol-gel-derived ZrO2 films under different calcination conditions. The sol-gel-derived ZrO2 films contain direct band, indirect band and band tail structures. The band tails are detected when O/Zr ratios are almost equal to or larger than stoichiometry (³ 2), indicating that the tails are primarily resulted from imperfect crystalline structures. In addition, the indirect band structures are determined when the O/Zr ratios are smaller than stoichiometry (< 2), suggesting that the indirect band structures are produced by lattice defects. These three kinds of band gaps were determined experimentally. Direct band gaps of the amorphous and m-tetragonal ZrO2 films ranged 5.90-6.12 and 5.32-5.74 eV, respectively, the monoclinic ZrO2 exhibited two direct band gaps ranged 5.87-6.00 and 4.89-5.08 eV, and the indirect band gaps of the amorphous, m-tetragonal and monoclinic ZrO2 films ranged 5.01-5.47, 4.77-5.40 eV, and 4.82-5.10 eV, respectively. The direct band gaps of ZrO2 films decreased with increasing crystallite sizes in air because of a quantum effect. However, O/Zr ratios dominate the band gaps in N2. Both the direct and indirect band gaps decrease upon decreasing O/Zr ratios because of increased contents of the lattice defects.
    Doping metal ions into ZrO2 lattice has been illustrated to improve the catalytic efficiency and ionic conductivity because introduced lattice defects modify the microstructures and electronic structures of ZrO2. The influence of calcination conditions on the ZrO2 films doped with seven transition metal ions, including Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, and Zn2+, are also examined based on the conversion of chemical states of dopants. Dehydroxylation, deoxygenation, and intake of oxygen ions from surface resulted in the reduction and oxidation of dopants in the bulk ZrO2 films. The depants, including Mn2+, Fe3+, Cu+, and Zn2+, having d5 or d10 configurations exhibited high stability against reduction induced by dehydroxylation. However, deoxygenation induced further reduction of these metal ions at high temperatures. The changes in chemical states of dopants dominate the d-spacings, crystallite sizes, preferred orientations and m-tetragonal-to-monoclinic phase transformation of the doped ZrO2 depending on their metallic or ionic radii relative to Zr4+. Also, the changed chemical states determine the impurity levels between intrinsic bands as well as band gaps of ZrO2, depending on their d-configurations.
    In summary, the reduction and oxidation induced by calcination change the chemical compositions of ZrO2 and doped ZrO2 films. The changed chemical compositions govern the microstructures and electronic structures of ZrO2 under different calcination conditions.

    Content Index Chapter 1 General Introduction………………………………………….. 1 1-1 Motivation……………………………………………………………………………. 2 1-2 Applications of ZrO2…………………………………………………………………. 3 1-2-1 Solid electrolytes…………………………………………………………….…. 3 1-2-2 Catalysts…………………………………………………………………….….. 4 1-2-3 Photocatalysts……………………………………………………………….…. 5 1-2-4 Dielectrics…………………………………………………………………...…. 6 1-3 Preparation of ZrO2 film using sol-gel methods……………………………………... 8 1-3-1 Sol-gel processing……………………………………………………………… 8 1-3-2 Acid-and base-catalyzed mechanisms and the textures of gels…………….…. 11 1-3-3 Sol-gel processes for preparation of thin films……………………………….. 13 1-4 Crystalline properties of ZrO2………………………………………………………. 17 1-4-1 Lattice structure of three phases……………………………………………... 17 1-4-2 The stabilization of the tetragonal phase…………………………………….. 20 1-4-3 The stability of m-tetragonal ZrO2 and the phase transformation…………… 22 1-5 The electronic structures of ZrO2……………………………………………………. 29 1-5-1 The theoretical electronic structure of ZrO2…………………………………. 29 1-5-2 The band transitions………………………………………………………….. 32 1-5-2-1 Direct band-to-band transitions……………………………………….. 32 1-5-2-2 Indirect band-to-band transitions…………………………………….... 34 1-5-2-3 Transitions between band tails……………………………………… 35 1-5-2-4 Transitions between impurity levels and bands……………………….. 36 1-5-3 The experimental band gaps of ZrO2………………………………………..… 38 1-6 Objectives………………………………………………………………………….…. 41 1-7 References……………………………………………………………………….…… 42 Chapter 2 Fabrication of Nanocrystalline ZrO2 films With Tunable Morphology and Thickness using Surface and Conventional Sol-gel Process………………………………………………………………………. 51 2-1 Introduction…………………………………………………………………………. 53 2-2 Experimental Sections………………………………………………………………… 55 2-2-1 Fabrication of ZrO2 Films……………………………………………………. 55 2-2-2 Characterizations…………………………………………………………….. 55 2-2-2-1 Scanning Electron Microscopy (SEM) Characterization……………… 55 2-2-2-2 Atomic Force Microscopy (AFM) Characterization………………… 56 2-2-2-3 Nitrogen Adsorption-Desorption Isotherm Measurement…………..… 56 2-2-2-4 Ellipsometery Measurement…………………………………………. 56 2-2-2-5 X-ray Photoelectron Spectroscopy Identification…………………….. 56 2-3 Results………………………………………………………………………………… 57 2-3-1 Morphologies of ZrO2 Films…………………………………………………. 57 2-3-2 The Textures of ZrO2 Films………………………………………………….. 58 2-3-3 The Thinckness of ZrO2 Films……………………………………………….. 62 2-3-4 Composition Analysis………………………………………………………... 65 2-4 Discussion……………………………………………………………………………. 67 2-5 Conclusions…………………………………………………………………………… 70 2-6 References…………………………………………………………………………… 70 Chapter 3 Dependence of Metastability of the Tetragonal Phase on the Chemical Compositions of Sol-gel-derived ZrO2 Thin Films under Different Calcination Conditions………………………………………… 73 3-1 Introduction……………………………………………………………….…………. 75 3-2 Experimental Sections……………………………………….……….…………….… 77 3-2-1 Preparation of Thin Films………………………………………………….…. 77 3-2-2 Characterization……………………………………………………………… 78 3-2-3 Data Management……………………………………………………………. 79 3-2-3-1 Volume Percentage of Phases……………………………………… 79 3-2-3-2 Crystallite Sizes……………………………………………………. 79 3-2-3-3 Curve Fitting of XPS Spectra……………………………………..… 80 3-3 Results……………………………………………………………………………… 81 3-3-1 Crystallite Properties of ZrO2 Films Calcined in Different Atmospheres…… 81 3-3-1-1 ZrO2 Thin Films Calcined In Air………………………………….. 81 3-3-1-2 ZrO2 Thin Films Calcined in N2…………………………………... 82 3-3-2 Chemical Compositions of ZrO2 Films Calcined in Air……………………... 86 3-3-2-1 Chemical Compositions in Bulk ZrO2……………………………….. 86 3-3-2-2 Chemical Compositions at the Surface……………………………... 90 3-3-3 Chemical Compositions in ZrO2 Films Calcined in N2……………………… 93 3-3-3-1 Chemical Compositions in Bulk ZrO2…………………………….. 93 3-3-3-2 Chemical Compositions at the Surface………………………………. 94 3-4 Discussion……………………………………………………………………………. 97 3-5 Conclusions………………………………………………………….………………. 104 3-6 References……………………………………………………………………………. 105 Chapter 4 The Effects of Calcination Condensations on Band Structures and Band Gaps of Structural ZrO2 Films Prepared by a sol-gel Method……………………………………………….…………….. 108 4-1 Introduction……………………………………………………………………….…. 110 4-2 Experimental Sections………………………………………………………………. 112 4-2-1 Preparation and Characterization of ZrO2 Films……………………………... 112 4-2-2 Data Management……………………………………………………………. 113 4-2-2-1 The Dependence of Absorption Coefficients on Photon Energies….. 113 4-2-2-2 Tail Absorptions……………………………………………………. 113 4-2-2-3 Direct and Indirect Band transitions……………………………....... 114 4-3 Results……………………………………………………………………………… 115 4-3-1 Crystalline Properties and Chemical Compositions…………………………. 115 4-3-2 Fundamental Absorptions……………………………………………………. 118 4-3-3 Band Gaps of Structural ZrO2 Films…………………………………………. 121 4-3-4 Valence-band Spectra………………………………………………………… 124 4-4 Discussion……………………………………………………………………………. 125 4-4-1 Band Structures of Structural ZrO2 Films…………………………………… 125 4-4-2 Band Gaps of Structural ZrO2 Films………………………………………… 129 4-5 Conclusions…………………………………………………………………………. 130 4-6 References………………………………………………………………………….. 132 Chapter 5 The Effect of Chemical States of Dopants on the Microstructures and Band Gaps of Metal-doped ZrO2 Thin Films at Different Temperatures…………………………………………………….. 134 5-1 Introduction………………………………………………………………………..… 136 5-2 Experimental Sections……………………………………………………………… 138 5-2-1 The Preparation of Metal-Dopes ZrO2 Thin Films…………………………. 138 5-2-2 Characterizations…………………………………………………………….. 139 5-3 Results…………………………………………………………………………….… 140 5-3-1 Crystalline Properties of Metal-Doped ZrO2 films at Different Temperatures. .140 5-3-2 Spectroscopic Properties of Metal-Doped ZrO2 films at Different Temperatures ………………………………………………………………………………………. 145 5-3-3 Chemical States of the Dopants at Difference Temperatures………………... 150 5-4 Discussion……………………………………………………………………………. 151 5-5 Conclusions…………………………………………………………………………. 156 5-6 References…………………………………………………………………………… 157 Chapter 6 Conclusions…………………………………………………. 160 Appendix…………………………………………………………………... 165 Appendix A The Optical Parameters of ZrO2 Thin Films…………………………….. 165 Appendix B The Direct Band Gaps of ZrO2 Thin Films……………………………….. 167 Appendix C The Reducing Behavior of Metal Ions in the as-dried ZrO2 Thin Films…. 170 Figure Index Figure 1-1 Schematic illustration of a sol-gel process: hydrolysis, condensation, and gelation……………………………………………………………………… 10 Figure 1-2 Mechanisms of acid- catalyzed hydrolysis and condensation.………………. 12 Figure 1-3 Mechanisms of base-catalyzed hydrolysis and condensation……………... 13 Figure 1-4 Sol-gel processes for the preparation of films………………………………. 14 Figure 1-5 Three types of structural micells in sol solutions as the concentration of surfactants increases. (a) hexagonal; (b) cubic; (c) lamellar………………... 16 Figure 1-6 Templating sol-gel method for the preparation of porous films…………….. 17 Figure 1-7 Schematic representation of three polymorphs of ZrO2 and the corresponding space groups…………………………………………………. 19 Figure 1-8 Calculated electronic structure of cubic ZrO2………………………………. 30 Figure 1-9 The mechanism of a direct band-to-band transition………………………… 33 Figure 1-10 The mechanism of an indirect band-to-band transition: (a) the transition between two indirect bands: (b) the transition between two direct bands…... 35 Figure 1-11 The electron transition from a valence band to conduction band tail….……. 36 Figure 1-12 Electron transitions between impurity levels and bands: (a) from an occupied impurity level to another empty impurity level: (b) from an occupied impurity level to a conduction band: (c) from a valence band to an empty impurity level: (d) from a valence band to the impurity levels containing holes…………………………………………………………… 37 Figure 2-1 The SEM images of surface sol-gel-derived ZrO2 films obtained at various Zr/ IPA ratios.(a) 1/20; (b) 1/40; (c) 1/60; (d) 1/100; (e) 1/180……………... 59 Figure 2-2 The topography of uncoated and coated substrates. (a) fused silica, (b) ZrO2 ultra-thin film obtained at Zr/IPA ratio of 1/1000…………………………… 60 Figure 2-3 The SEM images of the conventional sol-gel-derived ZrO2 films obtained at different Zr/IPA ratios.(a) 1/20 and (b) 1/90………………………………… 60 Figure 2-4 The SEM images of ZrO2 films prepared by the coating solutions which are at Zr/IPA of 1/20 and ages for 1 month. (a) the surface sol-gel-derived ZrO2 film , (b) the conventional sol-gel-derived ZrO2 film……………………..… 61 Figure 2-5 N2 adsorption-desorption curve of the ZrO2 films prepared by surface sol-gel method at the Zr/IPA ratio of 1/20…………………………………. 61 Figure 2-6 The film thickness of sol-gel-derived ZrO2 films as a function of Zr/IPA ratios. (a) surface sol-gel processes; (b) conventional sol-gel processes. The inset in (b) was obtained when hydrolyzed coating solutions aged for 1 month………………………………………………………………………… 64 Figure 2-7 The XPS spectra of surface sol-gel-derived ultra-thin film with film thickness of 1.8nm: (a) survey spectrum, (b) Zr 3d spectrum, (c) O 1s spectrum…………………………………………………………………….. 67 Figure 3-1 SEM images displaying the morphology and thickness of sol-gel-derived film. (a) Top view; (b) cross-sectional view………………………………. 79 Figure 3-2 (a) XRD patterns and (b) phase compositions of ZrO2 thin films calcined at various temperatures in air for 12 h……………………………………….. 84 Figure 3-3 (a) XRD patterns and (b) phase compositions of ZrO2 thin films calcined at various temperatures in N2 for 12 h…………………………………………. 85 Figure 3-4 Lattice O/Zr ratios in Bulk ZrO2 thin films calcined at different temperatures in air………………………………………………….……. 88 Figure 3-5 XPS spectra of (a) O 1s and (b) Zr 3d in Bulk ZrO2 thin films calcined at different temperature in air. The experiment results are presented as dotted curves, the fitted peaks as dashed curves, and the summarized results of the data as solid curves………………………………………………..…………. 89 Figure 3-6 The fractions of Zr species in Bulk ZrO2 films plotted as a function of the calcination temperature……………………………………………………… 90 Figure 3-7 XPS spectra of (a) O 1s and (b) Zr 3d at the surface of ZrO2 films calcined at 550 °C in air………………………………………………………………. 92 Figure 3-8 Surface O/Zr, Zr–O/Zr, and Zr-OH/Zr ratios plotted as a function of the temperature of ZrO2 film calcined in air……………………………………. 93 Figure 3-9 The O/Zr ratio in bulk ZrO2 films plotted as a function of the calcinations temperature in N2……………………………………………………………. 95 Figure 3-10 Fractions of Zr species in bulk ZrO2 films plotted as a function of the calcination temperature in N2……………………………………………… 96 Figure 3-11 The O/Zr, Zr–O/Zr, and Zr-OH/Zr ratios plotted as a function of the temperature in N2…………………………………………………………… 97 Figure 4-1 UV-Vis absorption spectra of ZrO2 calcined at elevated temperatures under different atmosphere. (a) Under air; (b) under N2…………………………… 117 Figure 4-2 Optical absorption spectra (symbols)of amorphous, m-tetragonal, and monoclinic ZrO2 and curve fitting (solid line) of the Urbach tails………….. 119 Figure 4-3 Plots of (αE)2 and (αE)1/2 of structural ZrO2 as functions of E. (a) Amorphous ZrO2, (b) m-tetragonal ZrO2, and (c) monoclinic ZrO2……….. 121 Figure 4-4 Valence-band spectra of ZrO2 thin films calcined under different conditions…………………………………………………………………… 125 Figure 4-5 The schematic band structures of amorphous, m-tetragonal and monoclinic ZrO2…………………………………………………………………………. 131 Figure 5-1 The SEM images of the (a) morphology and (b) thickness of the ZrO2 thin film………………………………………………………………………….. 140 Figure 5-2 XRD patterns of pure and doped ZrO2 thin films that had been calcined at 550 °C in air for 12h……………………………………………….………… 142 Figure 5-3 The relationship between d-spacings of (101)t and the concentrations of Mn2+ and Fe3+………………………………………………………….……. 143 Figure 5-4 XRD patterns of pure and doped ZrO2 thin films that had been calcined at 950 °C in air for 12h……………………………………………………….. 145 Figure 5-5 UV-Vis absorption spectra of the ZrO2 thin film and the difference absorption spectrum between the pure and metal-doped ZrO2 thin film calcined at 550 °C…………………………………………….................. 147 Figure 5-6 UV-Vis absorption spectra of the ZrO2 thin film and the difference absorption spectrum between the pure and metal-doped ZrO2 thin film calcined at 950 °C……………………………….............…………………... 148 Figure 5-7 The d-spacings of the (101)t profile in the metal-doped ZrO2 thin films plotted as a function of the radius of the dopants……………………….…… 154 Figure 5-8 Schematic impurity levels of the transition metal ions in the ZrO2 thin films……………………………..…………………………………………… 155 Scheme 3-1 Schematic representation of the mechanisms of the stabilization of the tetragonal phase of the m-tetragonal –to–monoclinic phase transformation in air…………………………………………………………………………. 103 Scheme 3-2 Schematic representation of the mechanisms of the stabilization of the tetragonal phase and of the transformations of the m-tetragonal to monoclinic and monoclinic to m-tetragonal phase in N2………………….. 104 Appendix A1 The refractive indexes of ZrO2 thin film and fused silica as a function of wavelength ranging from 250-900 nm………………………………… 166 Appendix B1 The direct band of the ZrO2 film calcined 550 °C in air………………… 168 Appendix B2 The direct band gaps of ZrO2 thin films calcined at 950 °C in air……….. 169 Table Index Table 1-1 Physicochemical properties of ZrO2………………………………………… 3 Table 1-2 Structural parameters of cubic, tetragonal, and monoclinic phases…………. 19 Table 1-3 Factors governing the stabilization of metastable tetragonal phase……….... 24 Table 1-3 Factors governing the stabilization of metastable tetragonal phase (continued)………………………………………………………………… 25 Table 1-4 Factors influencing on the stability of metastable tetragonal phase……….... 26 Table 1-4 Factors influencing on the stability of metastable tetragonal phase (continued)………………………………………………………………… 27 Table 1-4 Factors influencing on the stability of metastable tetragonal phase (continued)………………………………………………………………… 28 Table 1-5 Calculated bond gaps of cubic, tetragonal, and monoclinic ZrO2…………... 30 Table 1-6 Experimental band gaps of cubic, tetragonal, and monoclinic ZrO2……….. 40 Table 3-1 Parameters for curve fitting the Zr 3d and O1s photoelectron spectra……. 81 Table 3-2 The average crystallite sizes of the m-tetragonal and monoclinic phases calcined at various temperature……………………………………………… 83 Table 4-1 Crystalline phases, sizes and O/Zr ratios of ZrO2 films calcined under different conditions…………………………………………………………. 116 Table 4-2 Direct and indirect band gaps of ZrO2 films calcined at elevated temperature in air or N2………………………………………………….. 123 Table 5-1 The d-spacings of the (101)t profile and crystallite sizes of the pure and doped ZrO2 thin films……………………………………………………….. 144 Table 5-2 The binding energy (BE), separation (ΔE), and chemical states of dopants in ZrO2 thin films at different temperature…………………………………... 149 Table C1. The reduction potentials of metal ions and the cell potentials of ions/isopropanol couples…………………………………………………………………………………… 172

    References
    (1) Hannink, R. H. J.; Kelly, P. M.; Muddle, B. C. J. Am. Ceram. Soc. 2000, 83, 461.
    (2) Basu, B.; Vleugels, J.; Van der Biest, O. Mat. Sci. Eng. a-Struct. 2004, 380, 215.
    (3) Boulouz, M.; Martin, L.; Boulouz, A.; Boyer, A. Mat. Sci. Eng. B-Solid 1999, 67, 122.
    (4) Venkataraj, S.; Kappertz, O.; Liesch, C.; Detemple, R.; Jayavel, R.; Wuttig, M. Vacuum 2004, 75, 7.
    (5) Zhao, Z. W.; Tay, B. K.; Yu, G. Q.; Lau, S. P. J. Phys. - Condens. Mat. 2003, 15, 7707.
    (6) Hidaka, A.; Nakamura, J.; Sugimoto, J. Nucl. Eng. Des. 1997, 168, 361.
    (7) Maca, K.; Hadraba, H.; Cihlar, J. Ceram. Int. 2004, 30, 843.
    (8) Emeline, A.; Kataeva, G. V.; Litke, A. S.; Rudakova, A. V.; Ryabchuk, V. K.; Serpone, N. Langmuir 1998, 14, 5011.
    (9) Cernuschi, F.; Ahmaniemi, S.; Vuoristo, P.; Mantyla, T. J. Eur. Ceram. Soc. 2004, 24, 2657.
    (10) Chen, X. J.; Khor, K. A.; Chan, S. H.; Yu, L. G. Mat. Sci. Eng. a-Struct. 2002, 335, 246.
    (11) Acres, G. J. K. J. Power. Sources 2001, 100, 60.
    (12) Nakagawa, Y.; Tajima, N.; Hirao, K. J. Comput. Chem. 2000, 21, 1292.
    (13) De Rossi, S.; Ferraris, G.; Valigi, M.; Gazzoli, D. Appl. Catal. A-Gen. 2002, 231, 173.
    (14) Rao, T. V. M.; Deo, G.; Jehng, J. M.; Wachs, I. E. Langmuir 2004, 20, 7159.
    (15) Ardizzone, S.; Bianchi, C. L.; Signoretto, M. Appl. Surf. Sci. 1998, 136, 213.
    (16) Imamura, S.; Shimizu, H.; Haga, T.; Tsuji, S.; Utani, K.; Watanabe, M. Ind. Eng. Chem. Res. 1993, 32, 3146.
    (17) Misono, M.; Okuhara, T. Chemtech. 1993, 23, 23.
    (18) Fox, M. A.; Dulay, M. T. Chem. Rev. 1993, 93, 341.
    (19) Sato, S.; Kadowaki, T. J. Catal. 1987, 106, 295.
    (20) Navio, J. A.; Hidalgo, M. C.; Colon, G.; Botta, S. G.; Litter, M. I. Langmuir 2001, 17, 202.
    (21) Botta, S. G.; Navio, J. A.; Hidalgo, M. C.; Restrepo, G. M.; Litter, M. I. J. Photochem. Photobiol. A 1999, 129, 89.
    (22) Sharma, R. K.; Kumar, A.; Anthony, J. M. Jom-J. Min. Met. Mat. Soc. 2001, 53, 53.
    (23) Wilk, G. D.; Wallace, R. M.; Anthony, J. M. J. Appl. Phys. 2001, 89, 5243.
    (24) Lev, O.; Tsionsky, M.; Rabinovich, L.; Glezer, V.; Sampath, S.; Pankratov, I.; Gun, J. Anal. Chem. 1995, 67, A22.
    (25) Hwang, K. S.; Kwon, J. T.; Oh, J. S.; An, J. H.; Kim, B. H. J. Mater. Sci. 2004, 39, 1683.
    (26) Yang, X. H.; Shao, C. L.; Guan, H. Y.; Li, X. L.; Gong, H. Inorg. Chem. Commun. 2004, 7, 176.
    (27) Brinker, C. J.; Hurd, A. J.; Schunk, P. R.; Frye, G. C.; Ashley, C. S. J. Non-Cryst. Solids 1992, 147, 424.
    (28) Brinker, C. J.; Smith, D. M.; Deshpande, R.; Davis, P. M.; Hietala, S.; Frye, G. C.; Ashley, C. S.; Assink, R. A. Catal. Today 1992, 14, 155.
    (29) Tong, Y. H.; Liu, Y. C.; Lu, S. X.; Dong, L.; Chen, S. J.; Xiao, Z. Y. J. Sol-Gel Sci. Technol. 2004, 30, 157.
    (30) Kim, K. Y.; Park, S. B. Mater. Chem. Phys. 2004, 86, 210.
    (31) Brinker, C. J. S., G. W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing; Academic Press, Inc.: San Diego, 1990.
    (32) Boiadjieva, T.; Cappelletti, G.; Ardizzone, S.; Rondinini, S.; Vertova, A. Phys. Chem. Chem. Phys. 2003, 5, 1689.
    (33) Hernandez, C.; Pierre, A. C. Langmuir 2000, 16, 530.
    (34) Gong, W.; Li, J. F.; Chu, X. C.; Li, L. T. J. Eur. Ceram. Soc. 2004, 24, 2977.
    (35) Cerveau, G.; Corriu, R. J. P.; Framery, E. Chem. Mater. 2001, 13, 3373.
    (36) Dumeignil, F.; Sato, K.; Imamura, M.; Matsubayashi, N.; Payen, E.; Shimada, H. Appl. Catal. A-Gen. 2003, 241, 319.
    (37) Liu, D. M.; Troczynski, T.; Tseng, W. J. J. Biomaterials 2002, 23, 1227.
    (38) Pope, E. J. A.; Mackenzie, J. D. J. Non-Cryst. Solids 1986, 87, 185.
    (39) Takenaka, S.; Kozuka, H. Appl. Phys. Lett. 2001, 79, 3485.
    (40) Ichinose, I.; Senzu, H.; Kunitake, T. Chem. Mater. 1997, 9, 1296.
    (41) Schattka, J. H.; Shchukin, D. G.; Jia, J. G.; Antonietti, M.; Caruso, R. A. Chem. Mater. 2002, 14, 5103.
    (42) Caruso, R. A.; Antonietti, M. Chem. Mater. 2001, 13, 3272.
    (43) Raman, N. K.; Anderson, M. T.; Brinker, C. J. Chem. Mater. 1996, 8, 1682.
    (44) Park, S. H.; Qin, D.; Xia, Y. Adv. Mater. 1998, 10, 1028.
    (45) Meng, Q. B.; Fu, C. H.; Einaga, Y.; Gu, Z. Z.; Fujishima, A.; Sato, O. Chem. Mater. 2002, 14, 83.
    (46) Yoshimura, M. Am. Ceram. Soc. Bull. 1988, 67, 1950.
    (47) French, R. H.; Glass, S. J.; Ohuchi, F. S.; Xu, Y. N.; Ching, W. Y. Phys. Rev. B 1994, 49, 5133.
    (48) Zavodinsky, V. G. Phys. Solid State 2004, 46, 453.
    (49) Wang, S. B.; Murata, K.; Hayakawa, T.; Hamakawa, S.; Suzuki, K. Energ. Fuel. 2001, 15, 384.
    (50) Wang, J. A.; Valenzuela, M. A.; Salmones, J.; Vazquez, A.; Garcia-Ruiz, A.; Bokhimi, X. Catal. Today 2001, 68, 21.
    (51) Jakubus, P.; Adamski, A.; Kurzawa, M.; Sojka, Z. J. Therm. Anal. Calorim. 2003, 72, 299.
    (52) Collins, D. E.; Bowman, K. J. J. Mater. Res. 1998, 13, 1230.
    (53) Li, M. J.; Feng, Z. C.; Zhang, J.; Ying, P. L.; Xin, Q.; Li, C. Chinese J. Catal. 2003, 24, 861.
    (54) Gomez, R.; Lopez, T.; Bokhimi, X.; Munoz, E.; Boldu, J. L.; Novaro, O. J. Sol-Gel Sci. Technol. 1998, 11, 309.
    (55) Stefanic, G.; Music, S. Croat. Chem. Acta 2002, 75, 727.
    (56) Weber, B. C.; Schwartz, M. A. Ber. Dtsch. Keram. Ges. 1957, 34, 391.
    (57) Cypres, R.; Wollast, R.; Raucq, J. Ber. Deut. Keram. Ges. 1963, 40, 527.
    (58) Srinivasan, R.; Hubbard, C. R.; Cavin, O. B.; Davis, B. H. Chem. Mater. 1993, 5, 27.
    (59) Rivas, P. C.; Martinez, J. A.; Caracoche, M. C.; Rodriguez, A. M.; Garcia, A. R. L.; Pavlik, R. S.; Klein, L. C. J. Am. Ceram. Soc. 1998, 81, 200.
    (60) Li, P.; Chen, I. W.; Pennerhahn, J. E. J. Am. Ceram. Soc. 1994, 77, 1289.
    (61) Raghavan, S.; Wang, H.; Porter, W. D.; Dinwiddie, R. B.; Mayo, M. J. Acta Mater. 2001, 49, 169.
    (62) Davis, B. H. J. Am. Ceram. Soc. 1984, 67, C168.
    (63) Tani, E.; Yoshimura, M.; Somiya, S. J. Am. Ceram. Soc. 1981, 64, C181.
    (64) Tani, E.; Yoshimura, M.; Somiya, S. J. Am. Ceram. Soc. 1983, 66, 11.
    (65) Collins, D. E.; Rogers, K. A.; Bowman, K. J. J. Eur. Ceram. Soc. 1995, 15, 1119.
    (66) Garvie, R. C. J. Phys. Chem. 1965, 69, 1238.
    (67) Mitsuhasi, T.; Ichihara, M.; Tatsuke, U. J. Am. Ceram. Soc. 1974, 57, 97.
    (68) Shukla, S.; Seal, S. J. Phys. Chem. B 2004, 108, 3395.
    (69) Shukla, S.; Seal, S.; Vij, R.; Bandyopadhyay, S.; Rahman, Z. Nano Lett. 2002, 2, 989.
    (70) Huy, L. D.; Laffez, P.; Daniel, P.; Jouanneaux, A.; Khoi, N. T.; Simeone, D. Mat. Sci. Eng. B-Solid 2003, 104, 163.
    (71) Stefanic, G.; Stefanic, I. I.; Music, S. Mater. Chem. Phys. 2000, 65, 197.
    (72) Guo, X.; Schober, T. J. Am. Ceram. Soc. 2004, 87, 746.
    (73) Guo, X. Solid State Ionics 1998, 112, 113.
    (74) Sato, T.; Shimada, M. J. Am. Ceram. Soc. 1985, 68, 356.
    (75) Srinivasan, R.; Watkins, T. R.; Hubbard, C. R.; Davis, B. H. Chem. Mater. 1995, 7, 725.
    (76) Srinivasan, R.; Taulbee, D.; Davis, B. H. Catal. Lett. 1991, 9, 1.
    (77) Bokhimi, X.; Morales, A.; Novaro, O.; Lopez, T.; Gomez, R.; Xiao, T. D.; Strutt, P. R. Nanostruct. Mater. 1999, 12, 593.
    (78) Bokhimi, X.; Morales, A.; Novaro, O.; Portilla, M.; Lopez, T.; Tzompantzi, F.; Gomez, R. J. Solid. State. Chem. 1998, 135, 28.
    (79) Hartridge, A.; Krishna, M. G.; Bhattacharya, A. K. Thin Solid Films 2001, 384, 254.
    (80) Zhang, Y. W.; Jin, S.; Yang, Y.; Liao, C. S.; Yan, C. H. Solid State Commun. 2002, 122, 439.
    (81) Bose, A. C.; Ramamoorthy, R.; Ramasamy, S. Mater. Lett. 2000, 44, 203.
    (82) Garcia-Hipolito, M.; Falcony, C.; Aguilar-Frutis, M. A.; Azorin- Nieto, J. Appl. Phys. Lett. 2001, 79, 4369.
    (83) Bucko, M. M. J. Eur. Ceram. Soc. 2004, 24, 1305.
    (84) Martinez, J. A.; Rivas, P. C.; Caracoche, M. C.; Cervera, M. M.; Rodriguez, A. M.; Caruso, R.; Sanchez-Bajo, F. J. Sol-Gel Sci. Technol. 2004, 30, 35.
    (85) Zhang, Y. W.; Yang, Y.; Tian, S. J.; Liao, C. S.; Yan, C. H. J. Mater. Chem. 2002, 12, 219.
    (86) Kosacki, I.; Petrovsky, V.; Anderson, H. U. Appl. Phys. Lett. 1999, 74, 341.
    (87) Gibson, I. R.; Irvine, J. T. S. J. Am. Ceram. Soc. 2001, 84, 615.
    (88) Dell'Agli, G.; Mascolo, G. J. Eur. Ceram. Soc. 2004, 24, 915.
    (89) Czeppe, T.; Zieba, P.; Baliga, W.; Dobrev, E.; Pawlowski, A. Mater. Chem. Phys. 2003, 81, 312.
    (90) Colon, G.; Aviles, M. A.; Navio, J. A.; Sanchez-Soto, P. J. J. Therm. Anal. Calorim. 2002, 67, 229.
    (91) Caracoche, M. C.; Rivas, P. C.; Cervera, M. M.; Caruso, R.; Benavidez, E.; de Sanctis, O.; Mintzer, S. R. J. Mater. Res. 2003, 18, 208.
    (92) Caracoche, M. C.; Rivas, P. C.; Cervera, M. M.; Caruso, R.; Benavidez, E.; de Sanctis, O.; Escobar, M. E. J. Am. Ceram. Soc. 2000, 83, 377.
    (93) Clearfield, A. J. Mater. Res. 1990, 5, 161.
    (94) Wang, H. C.; Lin, K. L. J. Mater. Sci. 1991, 26, 2501.
    (95) Kung, H. H. Stud. Surf. Sci. Catal. 1989, 45, 124.
    (96) Lajavardi, M.; Kenney, D. J.; Lin, S. H. J. Chin. Chem. Soc.-Taip. 2000, 47, 1043.
    (97) Garvie, R. C.; Goss, M. F. J. Mater. Sci. 1986, 21, 1253.
    (98) Chraska, T.; King, A. H.; Berndt, C. C. Mat. Sc.i Eng. A-Struct. 2000, 286, 169.
    (99) Djurado, E.; Bouvier, P.; Lucazeau, G. J. Solid State Chem. 2000, 149, 399.
    (100) Kwok, C. K.; Aita, C. R. J. Appl. Phys. 1989, 66, 2756.
    (101) Kim, H. S.; McIntyre, P. C.; Saraswat, K. C. J. Mater. Res. 2004, 19, 643.
    (102) Gaertner, W. F.; Hoppe, E. E.; Omari, M. A.; Sorbello, R. S.; Aita, C. R. J. Vac. Sci. Technol. A 2004, 22, 272.
    (103) Ram, S. J. Mater. Sci. 2003, 38, 643.
    (104) Chung, T. J.; Song, H. S.; Kim, G. H.; Kim, D. Y. J. Am. Ceram. Soc. 1997, 80, 2607.
    (105) Chen, S. G.; Yin, Y. S.; Wang, D. P.; Wang, X. J. Mol. Struct. 2004, 703, 19.
    (106) Punnoose, A.; Seehra, M. S.; Wender, I. Fuel. Process. Technol. 2001, 74, 33.
    (107) Xie, S. B.; Iglesia, E.; Bell, A. T. Chem. Mater. 2000, 12, 2442.
    (108) Woudenberg, F. C. M.; Sager, W. F. C.; ten Elshof, J. E.; Verweij, H. J. Am. Ceram. Soc. 2004, 87, 1430.
    (109) Marinsek, M.; Macek, J.; Meden, T. J. Sol-Gel Sci. Technol. 2002, 23, 119.
    (110) Kralik, B.; Chang, E. K.; Louie, S. G. Phys. Rev. B 1998, 57, 7027.
    (111) Nishizaki, T.; Okui, M.; Kurosaki, K.; Uno, M.; Yamanaka, S.; Takeda, K.; Anada, H. J. Alloy. Compd. 2002, 330, 307.
    (112) Morant, C.; Fernandez, A.; Gonzalezelipe, A. R.; Soriano, L.; Stampfl, A.; Bradshaw, A. M.; Sanz, J. M. Phys. Rev. B 1995, 52, 11711.
    (113) Zandiehnadem, F.; Murray, R. A.; Ching, W. Y. Physica B & C 1988, 150, 19.
    (114) Stefanovich, E. V.; Shluger, A. L.; Catlow, C. R. A. Phys. Rev. B 1994, 49, 11560.
    (115) Orlando, R.; Pisani, C.; Roetti, C.; Stefanovich, E. Phys. Rev. B 1992, 45, 592.
    (116) Foschini, C. R.; Treu, O.; Juiz, S. A.; Souza, A. G.; Oliveira, J. B. L.; Longo, E.; Leite, E. R.; Paskocimas, C. A.; Varela, J. A. J. Mater. Sci. 2004, 39, 1935.
    (117) Pankove, J. I. Optical Processes in Semiconductors; Dover Publications, Inc.: New York, 1971.
    (118) Urbach, F. Phys. Rev. 1953, 92, 1324.
    (119) Aita, C. R.; Hoppe, E. E.; Sorbello, R. S. Appl. Phys. Lett. 2003, 82, 677.
    (120) Kwok, C. K.; Aita, C. R. J. Vac. Sci. Technol. A 1990, 8, 3345.
    (121) Venkataraj, S.; Kappertz, O.; Weis, H.; Drese, R.; Jayavel, R.; Wuttig, M. J. Appl. Phys. 2002, 92, 3599.
    (122) Zhang, Y. W.; Jin, S.; Liao, C. S.; Yan, C. H. Mater. Lett. 2002, 56, 1030.
    (123) Gao, Y. F.; Masuda, Y.; Ohta, H.; Koumoto, K. Chem. Mater. 2004, 16, 2615.
    (124) Miyazaki, S. Appl. Surf. Sci. 2002, 190, 66.
    (125) Lee, S. J.; Cho, E. A.; Ahn, S. J.; Kwon, H. S. Electrochim. Acta 2001, 46, 2605.
    (126) Puthenkovilakam, R.; Chang, J. P. Appl Phys. Lett. 2004, 84, 1353.
    (127) Jana, S.; Biswas, P. K. Mater. Lett. 1997, 30, 53.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE