簡易檢索 / 詳目顯示

研究生: 張癸五
Guey-Wu Chang
論文名稱: 以週期性極性反轉鈮酸鋰之電光效應為布拉格調變器
Electro-optic PPLN Bragg Modulator
指導教授: 黃衍介
Yen-Chieh Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電科技產業研發碩士專班
Interdisciplinary Program of Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 34
中文關鍵詞: 週期性極性反轉鈮酸鋰布拉格調變器電光效應雷射
外文關鍵詞: PPLN, Bragg Modulator, Electro-optic, Laser
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在此論文中,我們成功的展示一個新式且極具影響性的以週期性極性反轉鈮酸鋰之電光效應為布拉格調變器串接可調式準相位匹配非線性轉換晶體於單一晶片上。在實驗過程中,我們首先架設一個以前述布拉格調變器作為Q參數調變器之主動式Q參數調變雷射。此雷射以波長808 奈米之二極體雷射作泵浦源激發摻釹石榴石晶體產生波長1064 奈米之雷射。此實驗中所使用之電光效應布拉格調變器尺寸為17釐米 (長) x10釐米 (寬) x0.78釐米 (厚),週期20.1毫米,相對應半波電壓為160伏特。此主動式Q參數調變雷射再19.35瓦之泵浦公率下產生之最大輸出脈衝能量為198.7毫焦,其重複率為1千赫茲。此布拉格調變器的損耗調變在由室溫至攝氏180度之間最多有2.4%的誤差。根據前述特徵,一個非線性轉換串接此布拉格調變器得以實現。我們將前述主動式Q參數調變產生之波長1064奈米之雷射重新送回此串接式晶體中之非線性波長轉換區進行非線性轉換。藉由調動相位匹配溫度,在光參數產生區中,我們成功的產生了波長由1797至2608奈米之可調式波長雷射,溫度調動範圍由攝氏100度至168度。此光參數產生區之尺寸為30釐米 (長) x7釐米 (寬) x0.78釐米 (厚),週期31毫米。其輸出脈衝能量約為30毫焦,轉換效率在溫度調動過程中均能維持在17%。二次協頻產生則是三階二次協頻,週期19.5毫米,尺寸為30釐米 (長) x5釐米 (寬) x0.78釐米 (厚)之區段中產生。在鋒值泵浦功率6千瓦的情況下能產生%轉換效率30%之波長532奈米之綠光,其最大輸出平均功率因為光折變損傷效應而被箝制在18毫瓦。


    A novel, compact and monolithic Electro-Optic periodically poled lithium niobate (PPLN) Bragg modulator with tunable quasi-phase-matching PPLN has been successfully demonstrated in this thesis. In the experiments, an active Q-switched 1064nm laser pumped by 808 nm diode laser with a-cut 0.25% doped Nd:YVO4 crystal has been constructed with an EO Bragg modulator firstly. The dimension of the EO Bragg modulator is 17mm (L) x10mm (W) x0.78mm (d) with grating period Λ=20.1μm and the corresponding half-wave voltage is 160V. The maximum output energy of the AQS laser reaches 198.7 μJ under 19.35-W pump power at 1 kHz repetition rate. The loss modulation of the EO Bragg modulator is temperature insensitive by 2.4% loss deviation from room temperature to 180℃. According to this feature, a cascaded OPG/SHG nonlinear conversion section with EO Bragg modulator has an opportunity to actualize. We used the AQS 1064 nm laser generated by EO Bragg modulator and injected into the nonlinear conversion QPM sections to proceed the OPG/SHG process. A tunable wavelength laser from 1797 to 2608 nm was generated by tuning the phase-matching temperature from the 100℃ to 168℃. The dimension of OPG section is 30mm (L) x7mm (W) x0.78mm with grating period Λ=31μm. The output signal pulse energy was approximately 30 μJ and the conversion efficiency was held at 17% under different phase matching temperature. The SHG process was executed on the same chip with the 30 mm (L) x5 mm (W) x0.78 mm and grating period was Λ=19.5μm for 3rd order SHG process. The maximum conversion efficiency was 30% under 6kW peak pump power. Due to the photorefractive damage, the maximum 532nm average power was clamped at 18 mW.

    Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Q-switching 2 1.3 Electric-Optic (EO) Bragg Modulator 3 1.4 Nonlinear Frequency Mixing and Quasi-phase-matching (QPM) Technique 4 Chapter 2 Theory of Cascade Process in Periodically Poled Lithium Niobate with Nonlinear Conversion and EO Bragg Modulator 6 2.1 Introduction 6 2.2 EO Bragg Beam Deflector 6 2.3 Quasi-Phase-Matching Frequency Conversion 10 Chapter 3 Experimental Setup and Instrument 15 3.1 Introduction 15 3.2 Nonlinear Crystal 15 3.2.1 Fabrication of Periodically Poled Lithium Niobate Crystal 15 3.2.2 The Cascade Structure of PPLN Design 17 3.2.3 Optical Coating of PPLN 18 3.2.4 Electrode Fabrication 18 3.3 Cavity Design and Simulation 19 3.3.1 Pump Source and Gain medium 19 3.3.2 Voltage Driver 20 3.3.3 Cavity Simulation 20 3.3.4 Experimental Setup 22 Chapter 4. Experimental Result and Discussion 24 4.1 Introduction 24 4.2 Active Q-Switched 1064 nm Lasers 24 4.3 Optical Parametric Generation 26 4.4 Second Harmonic Generation 29 Chapter 5. Conclusion and Future Research Direction 31 5.1 Conclusion 31 5.2 Future Research Direction 32 Reference 33

    J. J. Zayhowski and C. Dill, III, "Diode-pumped microchip lasers electro-optically Q switched at high pulse repetition rates," Opt. Lett. 17, 1201 (1992).
    2 J. J. Zayhowski and C. Dill III, "Coupled-cavity electro-optically Q-switched Nd:YVO4 microchip lasers," Opt. Lett. 20, 716 (1995).
    3 Y. Bai, N. Wu, J. Zhang, J. Li, S. Li, J. Xu, and P. Deng, "Passively Q -switched Nd:YVO 4 laser with a Cr 4 :YAG crystal saturable absorber ," Appl. Opt. 36, 2468 (1997).
    4 A.E. Siegman, Lasers, (University Science Books, Sausalito,1986), chapter 26.
    5 A.Yariv and P. Yeh, Optical Waves in Crystals, (Wiley, New York, 1984), 230-234.
    6 J.A. Armstrong, N.Bloembergen, J. Ducuing, and P.S. Pershan, ”Interactions between Light Waves in a Nolinear Dielectric,” Physical Review, 127, 1918 (1962).
    7 L. Myers, R. Eckardt, M. Fejer, R. Byer, W. Bosenberg, and J. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12, 2102 (1995).
    8 B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, ( John Wiley, 1991), chapter 14.
    9 Taylor, Nick (2000). LASER: The inventor, the Nobel laureate, and the thirty-year patent war, (New York: Simon & Schuster) p.93
    10 McClung, F.J. and Hellwarth, R.W.: "Giant optical pulsations from ruby". Journal of Applied Physics 33 3, 828-829 (1962).
    11 Yen-Yin Lin, Novel Electro-optic PPLN Crystal for Laser Application, dissertation of doctoral degree, National Tsing Hua University, Taiwan, 2006.
    12 J.A. Armstrong, N. Bloembergen, J. Ducuing, and P.S. Pershan, ”Interactions between Light Waves in a Nolinear Dielectric,” Physical Review, 127, 1918 (1962).
    13 L. E. Myers, G. D. Miller, R. C. Eckardt, M M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phasematched 1.064-□m-pumped optical parametric oscillator in bulk periodically poled LiNbO3.” Opt Lett. 20, 52-54 (1995).
    14 An-Chung Chiang, Quasi-Phase-Matched Optical Parametric Amplifier in LiNbO3, dissertation of master degree, National Tsing Hua University, Taiwan, 1999.
    15 L. Myers, R. Eckardt, M. Fejer, R. Byer, W. Bosenberg, and J. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12, 2102 (1995).
    16 L. Myers, R. Eckardt, M. Fejer, R. Byer, W. Bosenberg, and J. Pierce, "Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3," J. Opt. Soc. Am. B 12, 2102 (1995).
    17 A.Yariv and P. Yeh, Optical Waves in Crystals, (Wiley, New York, 1984)
    18 B.E.A. Saleh and M.C. Teich, Fundamentals of Photonics, (John Wiley and Sons,1991), pp. 800-831.
    19 M. de Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, and M. Paturzo, “Evaluation of the internal field in lithium niobate ferroelectric domains by an interferometric method,” Appl. Phys. Lett., 85, (14), 2785 (2004).
    20 D. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett. 22, 1553 (1997).
    21 Pu Zhao, Baigang Zhang, Enbang Li, Rui Zhou, Degang Xu, Yang Lu, Tieli Zhang,
    Feng Ji, Xueyu Zhu, Peng Wang, Jianquan Yao “Experimental study on a high conversion efficiency, low threshold, high-repetition-rate periodically poled lithium niobate optical parametric generator” Optical Express Vol. 14, No. 16 (2006)
    22 Dieter H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate, ” OPTICS LETTERS, Vol. 22, No. 20, pp. 1553- 1555 (1997).
    23 C. Q. Xu, H. Okayama, and Y. Ogawa “Photorefractive damage of LiNbO3 quasiphase matched wavelength converters” JOURNAL OF APPLIED PHYSICS, Vol 87, No. 7 (2000)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE