簡易檢索 / 詳目顯示

研究生: 吳佳穎
Wu, Chia-Ying
論文名稱: UV THz-beat-wave Laser System
指導教授: 黃衍介
Huang, Yen-Chieh
口試委員: 林凡異
陳彥宏
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 45
中文關鍵詞: 拍頻雷射雷射放大器寬頻準相位匹配二倍頻二倍頻
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • A terahertz (THz) radiation source plays an important role in many applications, such as in biophysics, detecting and imaging. However, an effective method to generate coherent THz radiation is still under development. Based on nonlinear optical techniques, a beat-wave laser with THz spectral modulation can be a useful tool to generate a coherent THz wave. We have previously generated a sub-ns coherent THz wave from a difference frequency generator pumped by a THz beat-wave laser near 1.55-𝜇m. On the other hand, highly efficient electron radiation at THz frequencies is achievable from an electron radiation device such as an undulator or a Smith-Purcell grating. However, electron bunching is the key for efficient electron radiation. We intend to generate THz bunched electrons directly from a photocathode electron accelerator by illuminating the photocathode with a UV THz-beat-wave laser. With the THz modulated electrons emitted from the cathode, a highly efficient and compact coherent THz radiation source can be realized.
    In this thesis, a beat-wave seed laser was first generated by combining two continuous-wave (CW) diode lasers at telecom ~1.5-μm wavelengths. The combined CW beat-wave is then sent into an optical parametric amplifier (OPA) using a periodically poled lithium niobate (PPLN) crystal as a gain crystal. The OPA is pumped by an amplified passively Q-switch laser at 1064-nm. The OPA amplifies and modulates the seeding signals to further generate frequency sidebands through cascaded frequency mixing process in the PPLN crystal. The generated ~1.55-𝜇m beat-wave laser from the OPA was frequency quadrupled to achieve ~390-𝜇m in the second part of our experiment. In this part, three nonlinear optical crystals are used to triple the frequency of the infrared THz beat-wave laser to a UV one. A type-I PPLN crystal with grating period 20.6-𝜇m can provide a wide phase matching bandwidth for doubling the beat-wave laser at ~1.55-𝜇m to a beat-wave laser at ~780-nm. A LBO crystal is used to double the frequency of the ~780-nm beat-wave laser to obtain a wavelength at ~390-nm. In conclusion, we have demonstrated in this thesis a high power UV THz-beat-wave laser at ~390-nm with a beat frequency tunable from 0.25 THz to 1.5THz. This laser source can be useful to induce periodically bunched electron emission from a photocathode accelerator in the next endeavor.


    Abstract I Abstract in Chinese II Acknowledgement III Table of Contents IV List of Tables V List of Figures VI Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Beat-wave Seeded Optical Parametric Amplification 4 1.3 Overview of this Thesis 5 Chapter 2 Theory and Analysis 6 2.1 Gain analysis of Nd:YAG Amplifier 6 2.2 Optical Parametric Amplification and Frequency-Comb Generation 11 2.3 Second Harmonic Generation 13 2.4 Broadband Quasi-Phase-Matching SHG 20 Chapter 3 Experimental Results and Discussion 25 3.1 Introduction 25 3.2 Flashlamp Pumped Nd:YAG Amplifier 26 3.3 Beat-wave Seeded Optical Parametric Amplification 29 3.4 Second Harmonic Generations 31 Chapter 4 Conclusion and Future Work 40 4.1 Conclusion 40 4.2 Future Work 42 References 43

    [1] B. Ferguson and X. –C. Zhang, “Materials for terahertz science and
    technology”, Nature Materials 1, 26-33, (2002).

    [2] S.P. Mickan and X.-C. Zhang, Int. J. High Speed Electron. Syst. 13, 601, (2003).

    [3] P.H. Siegel, IEEE Trans Microwave Theory Tech. 50, 910, (2002).

    [4] D. Mittleman, “Sensing with Terahertz radiation”, Berlin, Germany:
    Springer-Verlag, (2003).

    [5] M. Tonouchi, “Cutting-edge terahertz technology”, Nature Photon. , vol. 1,
    97-105, (2007).

    [6] J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, and D.
    Zimdars, “THz imaging and sensing for security applications-Explosives, pons
    and drugs”, Semicond. Sci. Technol., vol. 20, S266-S280, (2005).

    [7] J. Faist et al. , “Quantum Cascade Laser”, Science 264 553-556, (1994).

    [8] P. R. Smith, D. H. Auston, and M. C. Nuss, “Subpicosecond photoconducting
    dipole antennas,” IEEE J. Quantum Electron. 24, 255-256, (1988).

    [9] X.-C., B. B. Hu, J. T. Darrow, and D. H. Auston, “Generation of femtosecond
    electromagnetic pulses from semiconductor surface,” Appl. Phys. Lett. 56,
    1011-1013, (1990).

    [10] T. D. Wang, S. T. Lin, Y. Y. Lin, A. C. Chiang, and Y. C. Huang, “Forward and
    backward Terahertz-wave difference-frequency generations from periodically
    poled lithium niobate”, Optics Express 16, 6471-6478, (2008).

    [11] S. J. Smith and E. M. Purcell, “Visible Light from Localized Surface Charges
    Moving across a Grating”, Phys. Rev. 92, 1069, (1953).

    [12] H. L. Andrews, C. H. Boulware, C. A. Brau, and J. D. Jarvis, “Dispersion and
    attenuation in a Smith-Purcell free electron laser” Phys. Rev. ST Accel. Beam 8,
    050703, (2005).

    [13] H. L. Andrews, C. H. Boulware, C. A. Brau, and J. D. Jarvis, “Superradiant
    emission of Smith-Purcell radiation”Phys. Rev. ST Accel. Beam 8, 110702,
    (2005).

    [14] A.S. Weling, B.B. Hu, N.M. Froberg, D.H. Auston,“Generation of tunable
    narrow-band THz radiation from large aperture photoconducting antennas,”
    Appl. Phys. Lett. 64, 137, (1994).

    [15] W. Koechner, “Solid state laser engineering”, Springer, sixth revised and
    updated edition.

    [16] Y. C. Huang, “Principles of Nonlinear Optics Course Reader”.

    [17] Richard L. Sutherland, “Handbook of nonlinear optics”, second edition, Marcel
    Dekkker, Inc.

    [18] O. Gayer, Z. Sacks, E. Galun, A. Arie, “Temperature and wavelength dependent
    refractive index equations for MgO:doped congruent and stoichiometric
    LiNbO3”, Appl. Phys. B 91, 343-348, (2008)

    [19] J.A.Armstrong, N.Bloembergen, J,Ducuing, and P.A.Pershan, Phys. Rev. 127 (1962)

    [20] P.A.Franken and J.F.Ward , Rev. Mod. Phys. 35 (1963)

    [21] M.M. Fejer, G.A. Magel, D.H. Jundt, and R.L. Byer, IEEE J. Quan.
    Elec.28 No.11 (1992)

    [22] N. E. Yu, S. Kurimura, and K. Kitamura, “Broadband quasi-phase-matched
    second-harmonic generation in MgO-doped periodically poled LiNbO3 at the
    communication band,” Opt. Lett. 27, 1046-1048, (2002).

    [23] K. J. Lee, S. Liu, K. Gallo, P. Petropoulos and, D. J. Richardson, “Analysis of
    acceptable spectral windows of quadratic cascaded nonlinear processes in a
    periodically poled lithium niobate wavequide”, Opt. Express, Vol. 19,
    pp8327-8335, (2011).

    [23] T. Tsang, T. Srinivasan-Rao, and J. Fischer,”Surface-Plasmon field-enhanced
    multiphoton photoelectric emission from metal films” Phys. Rev. B, Vol 43,
    pp8870-8878, (1991)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE